Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Debate Resolved on Human Cell Shut-Down Mechanisms

By BiotechDaily International staff writers
Posted on 25 Apr 2012
Researchers have resolved the controversy over the mechanisms involved in the shutdown process during cell division in the body.

The investigators, from the University of Liverpool (UK), published their findings April 2012 in the journal Proceeding of the National Academy of Sciences of the USA (PNAS), may contribute to future research on how scientists could modify this shut-down process to ensure that viruses and other pathogens do not enter the cells of the body and cause harm.

Earlier studies had shown that when cells divide, they cannot execute any other task apart from this one. They cannot, for example, take in food and fluids at the same time as managing the important process of dividing into “daughter cells” to replicate the body’s genetic data. Instead, cells, shut-down the intake of food and fluid during cell division, and for many years it was thought that they did this by preventing a receptor from moving nutrients through the cell membrane.

Recently, scientists have provided evidence to suggest that this hypothesis may be wrong. Scientists have contended that the cell does not shut down the processes that allow food and fluid to enter the cell as previously believed, but rather the receptors that transport this fuel are absent altogether during cell division, allowing the cell to focus on the one task of dividing.

Studies at Liverpool, however, have now shown that the original concept, first documented in 1965, is accurate. The receptors are present and able to transport food and fluid during cell division, but the mechanism that allows them through the membrane of the cell shuts-down until cell division is complete.

Dr. Stephen Royle, from the University’s Institute of Translational Medicine, explained, “We know that cells in the body do not have the ability to multitask during cell division. It can only focus on the job of dividing and not on other important tasks such as uptake of nutrients. If we think of the cell membrane like a dock at a port and the receptors as a boat delivering cargo, we have shown that the boat, or receptor, is present but the dock, or membrane, does not allow it to unload or go any further. Viruses and pathogens use the same route into cells as nutrients, so the next stage of this work is to identify the trigger for this shutdown process, so that we understand whether this on/off switch can be manipulated to prevent harmful infections passing through the cell membrane. This is a long way in the future, but this work puts us closer to understanding how the cells in the body work.”

Related Links:

University of Liverpool



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.