Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

Why Does Inhaling Anesthetics Cause Unconsciousness?

By BiotechDaily International staff writers
Posted on 04 Apr 2012
Image: The effects of Halothane on lipid rafts (Photo courtesy of NIST).
Image: The effects of Halothane on lipid rafts (Photo courtesy of NIST).
A new study suggests that the answer to this age-old question may lie in the effect of anesthesia on the organization of lipids in the cell's outer membrane, potentially altering the ability to send signals along nerve cells.

Researchers at the US National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA) set out to find out how exactly inhaled anesthetics interact with protein ion channels--large proteins embedded in the relatively small lipid molecules forming the membrane--which are responsible for conducting electrical impulses along the myelin sheath of the nerve cells. They found that while a cell membrane is a highly fluid film made of many different kinds of lipid molecules, the region immediately surrounding an ion channel often consists of a single type of lipids that form a sort of "raft" that is more ordered and less fluid then the rest of the membrane.

When prior research demonstrated that disrupting these lipid rafts could affect a channel's function, the researchers conducted X-ray and neutron diffraction studies of a binary lipid membrane that demonstrated that halothane (at physiological concentrations) produces a pronounced redistribution of lipids between domains of different lipid types, as identified by different lamellar d-spacing and isotope composition. In contrast, dichlorohexafluorocyclobutane (F6), a halogenated nonanesthetic, does not produce such significant effects. According to the researchers, these findings demonstrate a specific effect of inhalational anesthetics on mixing phase equilibria of a lipid mixture. The study was published on February 21, 2012, in Langmuir.

“A better fundamental understanding of inhaled anesthetics could allow us to design better ones with fewer side effects,” concluded lead author Hirsh Nanda, PhD, and colleagues of the NIST Center for Neutron Research (NCNR). “How these chemicals work in the body is a scientific mystery that stretches back to the Civil War.”

Related Links:

US National Institute of Standards and Technology



Channels

Genomics/Proteomics

view channel
Image: An activated PTEN dimer that contains two non-mutant proteins (A) can transform the functional lipid (D) on the cellular membrane (E) into a chemical form that tunes down cancer predilection. Dimers that contain a mutated protein (B) or PTEN monomers cannot transform the functional lipid (Photo courtesy of Carnegie Mellon University).

PTEN Requires a Stable Dimer Configuration to Effectively Suppress Tumor Growth

Molecular structural analysis has shown that the PTEN (phosphatase and tensin homolog) tumor suppressor can function effectively only when two wild-type alleles are present to form a stable dimer that... Read more

Lab Technologies

view channel
Image: The ChilliBlock modular system for precise, controlled cooling and heatingof biological samples (Photo courtesy of Asynt).

Modular Cooling/Heating System Safeguards Temperature-Sensitive Biological Samples

A new modular system designed for precise, controlled cooling and heating of biological samples in microplates, vials and Eppendorf tubes is now available for biotech, clinical, and life science laboratories.... Read more

Business

view channel

MS Drug Deal to Net More Than USD 1 Billion

A pharmaceutical company based in Switzerland has purchased the remaining rights to the multiple sclerosis drug Ofatumumab, which will allow it to continue development of the compound for treating relapsing remitting multiple sclerosis (RRMS) and similar autoimmune diseases. Novartis (Basel, Switzerland) recently announced... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.