Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Why Does Inhaling Anesthetics Cause Unconsciousness?

By BiotechDaily International staff writers
Posted on 04 Apr 2012
Image: The effects of Halothane on lipid rafts (Photo courtesy of NIST).
Image: The effects of Halothane on lipid rafts (Photo courtesy of NIST).
A new study suggests that the answer to this age-old question may lie in the effect of anesthesia on the organization of lipids in the cell's outer membrane, potentially altering the ability to send signals along nerve cells.

Researchers at the US National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA) set out to find out how exactly inhaled anesthetics interact with protein ion channels--large proteins embedded in the relatively small lipid molecules forming the membrane--which are responsible for conducting electrical impulses along the myelin sheath of the nerve cells. They found that while a cell membrane is a highly fluid film made of many different kinds of lipid molecules, the region immediately surrounding an ion channel often consists of a single type of lipids that form a sort of "raft" that is more ordered and less fluid then the rest of the membrane.

When prior research demonstrated that disrupting these lipid rafts could affect a channel's function, the researchers conducted X-ray and neutron diffraction studies of a binary lipid membrane that demonstrated that halothane (at physiological concentrations) produces a pronounced redistribution of lipids between domains of different lipid types, as identified by different lamellar d-spacing and isotope composition. In contrast, dichlorohexafluorocyclobutane (F6), a halogenated nonanesthetic, does not produce such significant effects. According to the researchers, these findings demonstrate a specific effect of inhalational anesthetics on mixing phase equilibria of a lipid mixture. The study was published on February 21, 2012, in Langmuir.

“A better fundamental understanding of inhaled anesthetics could allow us to design better ones with fewer side effects,” concluded lead author Hirsh Nanda, PhD, and colleagues of the NIST Center for Neutron Research (NCNR). “How these chemicals work in the body is a scientific mystery that stretches back to the Civil War.”

Related Links:

US National Institute of Standards and Technology



Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.