Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Why Does Inhaling Anesthetics Cause Unconsciousness?

By BiotechDaily International staff writers
Posted on 04 Apr 2012
Image: The effects of Halothane on lipid rafts (Photo courtesy of NIST).
Image: The effects of Halothane on lipid rafts (Photo courtesy of NIST).
A new study suggests that the answer to this age-old question may lie in the effect of anesthesia on the organization of lipids in the cell's outer membrane, potentially altering the ability to send signals along nerve cells.

Researchers at the US National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA) set out to find out how exactly inhaled anesthetics interact with protein ion channels--large proteins embedded in the relatively small lipid molecules forming the membrane--which are responsible for conducting electrical impulses along the myelin sheath of the nerve cells. They found that while a cell membrane is a highly fluid film made of many different kinds of lipid molecules, the region immediately surrounding an ion channel often consists of a single type of lipids that form a sort of "raft" that is more ordered and less fluid then the rest of the membrane.

When prior research demonstrated that disrupting these lipid rafts could affect a channel's function, the researchers conducted X-ray and neutron diffraction studies of a binary lipid membrane that demonstrated that halothane (at physiological concentrations) produces a pronounced redistribution of lipids between domains of different lipid types, as identified by different lamellar d-spacing and isotope composition. In contrast, dichlorohexafluorocyclobutane (F6), a halogenated nonanesthetic, does not produce such significant effects. According to the researchers, these findings demonstrate a specific effect of inhalational anesthetics on mixing phase equilibria of a lipid mixture. The study was published on February 21, 2012, in Langmuir.

“A better fundamental understanding of inhaled anesthetics could allow us to design better ones with fewer side effects,” concluded lead author Hirsh Nanda, PhD, and colleagues of the NIST Center for Neutron Research (NCNR). “How these chemicals work in the body is a scientific mystery that stretches back to the Civil War.”

Related Links:

US National Institute of Standards and Technology



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: S-649266 has more robust antibacterial activity than established antibiotics against multidrug-resistant bacteria (Photo courtesy of Shionogi).

Novel Antibiotic Shows Potential for Broad Range of Infections

The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. In order to treat bacterial... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.