Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 Oct 2016 - 12 Oct 2016
12 Nov 2016 - 16 Nov 2016

Circadian Variation Linked to Mechanism Underlying Sudden Cardiac Death

By BiotechDaily International staff writers
Posted on 27 Mar 2012
Print article
A molecular mechanism involved in regulating diurnal variation of potassium electrical currents in heart cells has now been directly linked to abnormal cardiac repolarization and susceptibility to arrhythmogenesis.

The incidence of sudden cardiac death from ventricular arrhythmias, the principal cause of mortality from heart disease worldwide, exhibits distinct diurnal variation in both acquired and hereditary forms of heart disease. In both forms, a common mechanism that enhances susceptibility to ventricular arrhythmias is abnormal myocardial repolarization. Despite rigorous investigation of ion channels that control myocardial repolarization, the molecular basis for the diurnal variation in occurrence of ventricular arrhythmias has remained unknown.

The current study, published in the journal Nature on February 22, 2012, identified circadian transcription of ion channels as part of a mechanism for cardiac arrhythmogenesis. The researchers demonstrated that cardiac ion-channel expression and QT-interval duration (a time index of myocardial repolarization) exhibit endogenous circadian rhythmicity under the control of a clock-dependent oscillator, krüppel-like factor 15 (Klf15). Klf15 was also shown to transcriptionally control rhythmic expression of potassium channel-interacting protein 2 (KChIP2), a critical subunit in generating the transient outward potassium current. Experiments with mice harboring a genetic change that caused them to make more Klf15 than normal, and with mice that lacked Klf15, increased the risk of deadly arrhythmias.

This "is the first example of a molecular mechanism for the circadian change in susceptibility to cardiac arrhythmias," said coauthor Xander Wehrens, professor of molecular physiology and biophysics and cardiology at Baylor College of Medicine (BCM; Houston, TX, USA). "If there was too much Klf15 or none, the mice were at risk for developing the arrhythmias," he said.

Although human heart repolarization is more complex than that of mice, these results provide a mechanistic foundation for future efforts to understand the process in humans and to prevent or treat human cardiac arrhythmias by modulating the circadian clock through behavioral or pharmacological means.

The study was performed by an international consortium of researchers, predominantly carried out at Case Western Reserve University School of Medicine (Cleveland, OH, USA), BCM, and the University of Fribourg (Fribourg, Switzerland).

Related Links:

Case Western Reserve University School of Medicine
Baylor College of Medicine
University of Fribourg



Print article

Channels

Drug Discovery

view channel
Image: Ginger is the source of a novel class of nanolipid transport vector (Photo courtesy of Georgia State University).

Ginger-Derived Doxorubicin-Loaded Nanovectors as Drug Delivery for Cancer Therapy

A novel type of nanoparticle drug transport system based on lipids isolated from ginger was used to deliver the toxic chemotherapeutic agent doxorubicin (Dox) to colon cancer cells with minimal damage... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.