Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Circadian Variation Linked to Mechanism Underlying Sudden Cardiac Death

By BiotechDaily International staff writers
Posted on 27 Mar 2012
A molecular mechanism involved in regulating diurnal variation of potassium electrical currents in heart cells has now been directly linked to abnormal cardiac repolarization and susceptibility to arrhythmogenesis.

The incidence of sudden cardiac death from ventricular arrhythmias, the principal cause of mortality from heart disease worldwide, exhibits distinct diurnal variation in both acquired and hereditary forms of heart disease. In both forms, a common mechanism that enhances susceptibility to ventricular arrhythmias is abnormal myocardial repolarization. Despite rigorous investigation of ion channels that control myocardial repolarization, the molecular basis for the diurnal variation in occurrence of ventricular arrhythmias has remained unknown.

The current study, published in the journal Nature on February 22, 2012, identified circadian transcription of ion channels as part of a mechanism for cardiac arrhythmogenesis. The researchers demonstrated that cardiac ion-channel expression and QT-interval duration (a time index of myocardial repolarization) exhibit endogenous circadian rhythmicity under the control of a clock-dependent oscillator, krüppel-like factor 15 (Klf15). Klf15 was also shown to transcriptionally control rhythmic expression of potassium channel-interacting protein 2 (KChIP2), a critical subunit in generating the transient outward potassium current. Experiments with mice harboring a genetic change that caused them to make more Klf15 than normal, and with mice that lacked Klf15, increased the risk of deadly arrhythmias.

This "is the first example of a molecular mechanism for the circadian change in susceptibility to cardiac arrhythmias," said coauthor Xander Wehrens, professor of molecular physiology and biophysics and cardiology at Baylor College of Medicine (BCM; Houston, TX, USA). "If there was too much Klf15 or none, the mice were at risk for developing the arrhythmias," he said.

Although human heart repolarization is more complex than that of mice, these results provide a mechanistic foundation for future efforts to understand the process in humans and to prevent or treat human cardiac arrhythmias by modulating the circadian clock through behavioral or pharmacological means.

The study was performed by an international consortium of researchers, predominantly carried out at Case Western Reserve University School of Medicine (Cleveland, OH, USA), BCM, and the University of Fribourg (Fribourg, Switzerland).

Related Links:

Case Western Reserve University School of Medicine
Baylor College of Medicine
University of Fribourg



Channels

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.