We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Area of Noncoding DNA Regulates Activity of Heartbeat Control Protein

By LabMedica International staff writers
Posted on 09 Jun 2014
Print article
Image: Normal ECG/EKG complex with labels (Photo courtesy of Wikimedia Commons).
Image: Normal ECG/EKG complex with labels (Photo courtesy of Wikimedia Commons).
Variants in a stretch of DNA not used by the genome for coding proteins have been linked to changes in the way the heart beats and may be linked to the risk of sudden cardiac death.

In cardiology, the QT interval is a measure of the time between the start of the Q wave and the end of the T wave in the heart's electrical cycle. The QT interval represents electrical depolarization and repolarization of the ventricles. A lengthened QT interval is a marker for the potential of ventricular tachyarrhythmias and a risk factor for sudden death.

Previous studies have associated the gene NOS1AP (nitric oxide synthase 1 adaptor protein) and NOS1AP polymorphisms with the QT interval length. Investigators at Johns Hopkins University (Baltimore, MD, USA) continued research in this area by employing multiple human genetic and molecular genetic assays as well as cellular assays using genetically engineered rat cardiomyocytes to look at the relationship between gene expression and QT interval length.

They reported in the May 22, 2014, online edition of the American Journal of Human Genetics that they were able to identify a functional variant underlying trait association: a noncoding polymorphism that mapped within an enhancer of NOS1AP and affected cardiac function by increasing NOS1AP transcript expression. They further localized NOS1AP to cardiomyocyte intercalated discs (IDs) and demonstrated that overexpression of NOS1AP in cardiomyocytes led to altered cellular electrophysiology.

“Traditionally, geneticists have studied gene variants that cause disease by producing an abnormal protein,” said senior author Dr. Aravinda Chakravarti, professor of medicine, pediatrics, molecular biology, genetics, and biostatistics at the Johns Hopkins University. “We think there will turn out to be many DNA variants that, like this one, cause disease by making too much or too little of a normal protein. The problem is that most of these variants lie outside of genes, in the noncoding DNA that controls how genes are used, so it is hard to tell what genes they are affecting.”

“Hundreds of genome-wide association studies have been done to find genetic variants associated with disease, but this is one of just a handful of follow-up studies to look for the mechanism behind such a variant,” said Dr. Chakravarti. “I think we have shown there is great value in asking why.”

Related Links:

Johns Hopkins University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.