We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Advanced Imaging Technique Tracks Molecular Movement in Membranes of Living Cells

By LabMedica International staff writers
Posted on 20 Aug 2013
Print article
Image: The STED-RICS microscope scans the fluorescent cell membrane with a light spot and, thus, an image is recorded (Photo courtesy of the Karlsruhe Institute of Technology).
Image: The STED-RICS microscope scans the fluorescent cell membrane with a light spot and, thus, an image is recorded (Photo courtesy of the Karlsruhe Institute of Technology).
Cell biologists have combined two advanced imaging techniques to study the movement of molecules in the membranes of living cells and tissues.

Investigators at Karlsruhe Institute of Technology (Germany) combined raster image correlation spectroscopy (RICS) with stimulated emission depletion microscopy (STED) in imaging experiments on model membranes and live cells.

RICS is a powerful tool to study fast molecular dynamics such as protein diffusion or receptor–ligand interactions inside living cells and tissues. By analyzing time dependent spatial correlations of fluorescence intensity fluctuations from raster-scanned microscopy images, molecular motions can be revealed in a spatially resolved manner. However, because of diffraction-limited optical resolution, conventional raster image-correlation spectroscopy can only distinguish larger regions of interest and requires low fluorophore concentrations in the nanomolar range.

To counter the limitations of RICS the investigators combined it with STED microscopy. A STED microscope is a fluorescence microscope where the light spot scanning the fluorescence image can be reduced considerably. This method has already been used successfully to reach a maximum resolution in the imaging of cells.

In the current study, which was published in the June 27, 2013, online edition of the journal Nature Communications, the investigators showed that STED-RICS microscopy offered enhanced multiplexing capability because of enhanced spatial resolution as well as access to 10–100 times higher fluorophore concentrations.

“This means that the STED-RICS method can be used to derive from any fluorescence image a highly resolved map of the number and movability of the marked molecules in the area scanned by the spot,” said senior author Dr. Gerd Ulrich Nienhaus, professor of applied physics at the Karlsruhe Institute of Technology.

Application of the STED-RICS technique will enable investigators to precisely and quantitatively track the movements of cell membrane lipids and receptors. The action of many drugs is linked to the interactions among these molecules. “About every second medical substance influences signal transduction of G-protein coupled receptors, an important subclass,” said Dr. Nienhaus.

Related Links:
Karlsruhe Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.