We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




A Molecular Hinge Allows Transport Proteins to Move Neurotransmitters Across Brain Cell Membranes

By LabMedica International staff writers
Posted on 13 May 2013
Print article
Image: Senior author Dr. Shimon Schuldiner (Photo courtesy of the Hebrew University of Jerusalem).
Image: Senior author Dr. Shimon Schuldiner (Photo courtesy of the Hebrew University of Jerusalem).
An international team of molecular biologists has developed a model that shows how components of a protein transport complex act as a molecular hinge to move neurotransmitters across brain cell membranes.

Investigators at the Hebrew University of Jerusalem (Israel) and the Max Planck Institute of Biophysics (Frankfurt am Main, Germany) focused on vesicular monoamine transporter 2 (VMAT2), a member of the largest superfamily of transporters, which is known to convey a variety of neurotransmitters such as adrenaline, dopamine, and serotonin as well as MPP, a neurotoxin linked to Parkinson’s disease.

In the April 9, 2013, issue of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) they described the importance of two anchor points positioned between two six-transmembrane-helix bundles. These two domains provide hinge points about which the two halves of the protein flex and straighten to open and close the translocation pathway, a process that enables alternating exposure of the substrate-binding site. Polar residues that create a hydrogen bond cluster form one of the anchor points of VMAT2, while the other results from hydrophobic interactions.

The investigators, led by Dr. Shimon Schuldiner, professor of biochemistry at the Hebrew University of Jerusalem, said that, "They hope that this knowledge may, in the future, help in designing drugs for treating pathologies involving transporters similar to VMAT, including infectious and neurological diseases."

Related Links:
Hebrew University of Jerusalem
Max Planck Institute of Biophysics


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.