We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




New Mole Rat Cancer Resistance Pathway Discovered

By LabMedica International staff writers
Posted on 12 Nov 2012
Print article
Image: A blind mole rat shown on the background of dying necrotic blind mole rat tissue culture cells (Photo courtesy of University of Rochester).
Image: A blind mole rat shown on the background of dying necrotic blind mole rat tissue culture cells (Photo courtesy of University of Rochester).
In a study of a species of mole rats, biologists have identified a cancer resistance mechanism different from another long-lived, cancer-resistant mole rat species discovered earlier.

The researchers, led by Professor Vera Gorbunova and Assistant Professor Andrei Seluanov of the University of Rochester (Rochester, NY, USA), found that abnormally growing cells from blind mole rats secrete interferon-beta (IFN-β) that triggers those and neighboring cells to rapidly die. Blind mole rats (BMR) from the Middle East and naked mole rats from Africa, both subterranean rodents with long life spans, are the only examined mammals never known to naturally develop cancer and in which spontaneous tumors have never been observed. Previously, a team led by Profs. Seluanov and Gorbunova identified an anticancer mechanism in the naked mole rat in which the p16 gene causes cancerous cells from these rats to become hypersensitive to overcrowding, preventing them from proliferating further. "We expected blind mole rats to have a similar mechanism [...]. Instead, we discovered they've evolved their own mechanism," said Prof. Seluanov.

In the current study, growth of BMR fibroblast cells in vitro, from the BMR species Spalax judaei and Spalax golani, were examined. The cells were made to actively proliferate for an abnormally large number of population doublings, after which the precancerous-like cells began secreting IFN-β and the cultures underwent massive, concerted necrotic cell death within 3 days. The necrotic cell death phenomenon was independent of culture conditions or telomere shortening. Sequestration of p53 and Rb proteins using SV40 large T antigen completely rescued necrotic cell death. The results suggest that cancer resistance in BMR is conferred by massive necrotic response to overproliferation mediated by p53 and Rb pathways, and triggered by the release of IFN-β.

"Not only were the cancerous cells killed off, but so were the adjacent cells, which may also be prone to tumorous behavior," said Prof. Seluanov. "While people don't use the same cancer-killing mechanism as blind mole rats, we may be able to combat some cancers and prolong life if we could stimulate the same clean sweep reaction in cancerous human cells," said Prof. Gorbunova. Profs. Gorbunova and Seluanov added that next they want to determine what initiates this suicidal secretion of IFN-β.

The study was published online ahead of print November 5, 2012, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:
University of Rochester

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.