We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Use of Noninvasive Blood Thermograms to Diagnose Cervical Cancer

By LabMedica International staff writers
Posted on 22 Jan 2014
Print article
Image: University of Louisville investigators noted that plasma thermograms have different patterns associated with different demographics, as well as for different diseases (Photo courtesy of the University of Louisville).
Image: University of Louisville investigators noted that plasma thermograms have different patterns associated with different demographics, as well as for different diseases (Photo courtesy of the University of Louisville).
Image: Typical Differential scanning calorimetry (DSC) thermogram (Photo courtesy of University of California, Davis).
Image: Typical Differential scanning calorimetry (DSC) thermogram (Photo courtesy of University of California, Davis).
Differential scanning calorimetry (DSC), a noninvasive analytical tool, has been adapted to analyze blood samples and produce plasma thermograms that are diagnostic for cervical cancer.

DSC technology has recently been shown to detect specific changes in the thermal behavior of blood plasma proteins in several diseases. The present study, carried out by cervical cancer investigators at the University of Louisville (KY, USA), evaluated the utility of employing DSC to differentiate among healthy controls, increasing severity of cervical intraepithelial neoplasia (CIN), and early and advanced invasive carcinomas of the cervix (IC).

The noninvasive DSC procedure generates a plasma thermogram from a blood plasma sample that has been “melted” to produce a unique signature indicating an individual’s health status.

Results revealed that significant discrimination was apparent relative to the extent of disease with no clear effect of demographic factors such as age, ethnicity, smoking status, and parity. Of most clinical relevance, there was strong differentiation of CIN from healthy controls and IC, and among patients with IC between Stage I and advanced cancer.

The investigators speculated that the observed disease-specific changes in a patient's thermogram reflected differential expression of disease biomarkers that subsequently bound to and affected the thermal behavior of the most abundant plasma proteins. The effect of interacting biomarkers could be inferred from the modulation of thermograms but could not be directly identified by DSC. To investigate the nature of the proposed interactions, mass spectrometry (MS) analyses were employed. Quantitative assessment of the low molecular weight protein fragments of plasma and urine samples revealed a small list of peptides whose abundance was correlated with the extent of cervical disease.

“We have been able to demonstrate a more convenient, less intrusive test for detecting and staging cervical cancer,” said first author Dr. Nichola Garbett, instructor of medicine at the University of Louisville. “The key is not the actual melting temperature of the thermogram, but the shape of the heat profile. We have been able to establish thermograms for a number of diseases. Comparing blood samples of patients who are being screened or treated against those thermograms should enable us to better monitor patients as they are undergoing treatment and follow-up. This will be a chance for us to adjust treatments so they are more effective. Additionally, other research has shown that we are able to demonstrate if the current treatment is effective so that clinicians will be able to better tailor care for each patient.”

In order to commercialize DSC technology the University of Louisville investigators have founded a start-up company, Louisville Bioscience, Inc. (KY, USA), which holds an exclusive license for the Plasma Thermogram (pT) technology.

The study describing use of DSC to diagnose cervical cancer was published in the January 8, 2014, online edition of the journal PLOS ONE.

Related Links:

University of Louisville
Louisville Bioscience, Inc.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.