We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Transcription Factor Deficit Spurs Tumor Development

By LabMedica International staff writers
Posted on 28 Jun 2017
Print article
Image: A photomicrograph of human breast cancer line MCF-7 cells (Photo courtesy of Wikimedia Commons).
Image: A photomicrograph of human breast cancer line MCF-7 cells (Photo courtesy of Wikimedia Commons).
A team of British cancer researchers found that the transcription factor proline-rich homeodomain protein (PRH/HHEX) played a tumor suppressive role in the breast, and they provided an explanation for the finding that low PRH mRNA levels were associated with a poor prognosis in breast cancer.

Breast tumors progress from hyperplasia to ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). In order to study the role of the PRH/HEX transcription factor in this progression, investigators at the University of Birmingham (United Kingdom) adapted a population of human breast cancer MCF-7 cells to under or over produce PRH/HEX.

They reported in the June 12, 2017, online edition of the journal Oncogenesis that transcriptionally inactive phosphorylated PRH was elevated in DCIS and IBC compared with tissues in the normal breast. To determine the consequences of PRH loss of function in breast cancer cells, they induced PRH depletion in their line of MCF-7 cells. They showed that PRH depletion resulted in increased MCF-7 cell proliferation in part at least due to increased vascular endothelial growth factor signaling. Moreover, they demonstrated that PRH depletion increased the formation of breast cancer cells with cancer stem cell-like properties.

In a mouse model, PRH overexpression inhibited the growth of mammary tumors. Taken together, these data indicated that PRH played a tumor suppressive role in the breast, and they provided an explanation for the finding that low PRH mRNA levels were associated with a poor prognosis in breast cancer.

Senior author Dr. Padma Sheela Jayaraman, senior lecturer in cancer biology at the University of Birmingham, said, "PRH is a protein that controls and regulates when genes are switched on or off. However, prior to our research, the role of this protein in breast cancer has been poorly understood. In the laboratory, we found that when PRH protein levels are reduced in a breast tumor the cells are more able to divide, speeding up the progression of the tumor. Moreover, we identified some of the genes which are regulated by PRH and specifically contribute to the increased cell division."

"We made the significant finding that high levels of PRH actually blocked the formation of the tumors, therefore our data suggests that PRH can block tumor formation in some breast cancers," said Dr. Jayaraman. "We propose that monitoring PRH protein levels or activity in patients with breast cancer could be particularly important for assessing their prognosis. In addition, since PRH is known to be important in multiple cell types, this work has important implications for other types of cancer."

Related Links:
University of Birmingham

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.