We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Novel Combination of Nanotechnology and Gene Therapy Repairs Damaged Arterial Walls

By LabMedica International staff writers
Posted on 20 Jan 2016
Print article
Image: On the left are fluorescence-labeled cells with nanoparticles: The cellular nuclei are shown in blue, the fluorescence labeling is shown in green, and the nanoparticles in the cells are identified by arrows. The middle photo shows a blood vessel populated with these cells (green). On the right is a detailed image of a vascular wall with the eNOS protein identified (red) (Photo courtesy of Dr. Sarah Rieck/Dr. Sarah Vosen, University of Bonn).
Image: On the left are fluorescence-labeled cells with nanoparticles: The cellular nuclei are shown in blue, the fluorescence labeling is shown in green, and the nanoparticles in the cells are identified by arrows. The middle photo shows a blood vessel populated with these cells (green). On the right is a detailed image of a vascular wall with the eNOS protein identified (red) (Photo courtesy of Dr. Sarah Rieck/Dr. Sarah Vosen, University of Bonn).
Vascular disease researchers have demonstrated the possibility of using a combination of magnetic nanoparticles and virally-transported genes to repair damage and restore function in the walls of arteries following anti-arteriosclerosis treatment.

Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation in sites in the arterial walls. Surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function.

To repair damage to the arteries and restore normal vascular function, investigators at the University of Bonn (Germany) combined nanotechnology with gene and cell therapy.

In the January 6, 2016, online edition of the journal ACS NANO, the investigators described the development of unique magnetic nanoparticles (MNPs) linked to lentiviral vectors designed to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The resulting MNP-loaded and eNOS-overexpressing cells were magnetic, and, by using an external magnet, they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions.

The investigators demonstrated that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in mice that had been genetically engineered to lack the eNOS gene.

"Endothelial cells which line the blood vessels play an important role here. They produce nitric oxide and also regulate the expansion of the vessels and the blood pressure," said senior author Dr. Daniela Wenzel, professor of physiology at the University of Bonn. "Damage to the endothelial cells is generally the insidious onset of arteriosclerosis. However, these areas frequently become blocked with deposits once again. In contrast, we are getting to the root of the problem and are restoring the original condition of healthy endothelial cells."

Related Links:

University of Bonn


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.