We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




SecA Inhibitors Block Growth of Methicillin-Resistant Staphylococcus aureus

By LabMedica International staff writers
Posted on 15 Dec 2015
Print article
Image: Colorized scanning electron micrograph (SEM) shows a grouping of methicillin resistant Staphylococcus aureus (MRSA) bacteria magnified 20,000 times (Photo courtesy of the CDC – US Centers for Disease Control and Prevention).
Image: Colorized scanning electron micrograph (SEM) shows a grouping of methicillin resistant Staphylococcus aureus (MRSA) bacteria magnified 20,000 times (Photo courtesy of the CDC – US Centers for Disease Control and Prevention).
A novel class of low molecular weight compounds has been shown to effectively inhibit the growth of methicillin-resistant Staphylococcus aureus (MRSA), one of the most serious drug-resistant bacterial pathogens.

Investigators at Georgia State University (Atlanta, USA) had shown previously that small molecular components of the dye Rose Bengal (RB) were active against the bacteria Escherichia coli and Bacillus subtilis. This activity was found to be due to inhibition of SecA, a cell membrane-associated subunit of the eubacterial Sec or Type II secretory pathway, a system which is responsible for the secretion of proteins through the cell membrane. Within this system SecA has the functional properties of an ATPase and is required to empower the movement of the protein substrate across the translocation channel. Thus, SecA is a key component of the general bacterial secretion system required for viability and virulence.

In the current study, which was published in the November 1, 2015, issue of the journal Bioorganic & Medicinal Chemistry, the investigators evaluated two potent RB analogs for activities against MRSA strains and for their mechanism of actions.

These analogs inhibited the ATPase activities of S. aureus SecA1 (SaSecA1) and SecA2 (SaSecA2), and inhibited the SaSecA1-dependent protein-conducting channel. Moreover, these inhibitors reduced the secretion of three toxins from S. aureus and exerted potent bacteriostatic effects against three MRSA strains.

The best inhibitor, SCA-50, showed potent concentration-dependent bactericidal activity against MRSA Mu50 strain and very importantly, two to 60-fold more potent inhibitory effect on MRSA Mu50 than all the commonly used antibiotics including vancomycin, which is considered the last resort option in treating MRSA-related infections.

Deletion or overexpression of bacterial efflux pumps had minimal effect on the antimicrobial activities against S. aureus, indicating that the effects of SecA inhibitors were not affected by the presence of these efflux pumps. This study showed that these small molecule analogs of Rose Bengal targeted SecA functions, had potent antimicrobial activities, reduced the secretion of toxins, and had the ability to overcome the effect efflux pumps, which are responsible for multi-drug resistance.

"We have found that SecA inhibitors are broad-spectrum antimicrobials and are very effective against strains of bacteria that are resistant to existing antibiotics," said contributing author Dr. Binghe Wang, professor of chemistry at Georgia State University.

Related Links:

Georgia State University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.