We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




“Switch Off Button” Discovered in Autoimmune Disorders

By LabMedica International staff writers
Posted on 22 Sep 2014
Print article
Image: Aggressor cells, which have the potential to cause autoimmunity, are targeted by treatment, causing conversion of these cells to protector cells. Gene expression changes gradually at each stage of treatment, as illustrated by the color changes in this series of heat maps (Photo courtesy of the University of Bristol/Dr. Bronwen Burton).
Image: Aggressor cells, which have the potential to cause autoimmunity, are targeted by treatment, causing conversion of these cells to protector cells. Gene expression changes gradually at each stage of treatment, as illustrated by the color changes in this series of heat maps (Photo courtesy of the University of Bristol/Dr. Bronwen Burton).
Scientists have made an important advance in the fight against debilitating autoimmune diseases such as multiple sclerosis by demonstrating how to stop cells destroy healthy body tissue. Instead of the body’s immune system destroying its own tissue by mistake, researchers have discovered how cells can be transformed from being aggressive to actually protecting against disease.

The study’s findings were published September 3, 2014, in the journal Nature Communications. It is hoped this latest insight will lead to the widespread use of antigen-specific immunotherapy as a treatment for many autoimmune disorders, including multiple sclerosis (MS), type 1 diabetes, systemic lupus erythematosus (SLE), and Graves’ disease. MS alone affects approximately 2.5 million people worldwide.

Scientists from the University of Bristol (UK) were able to selectively target the cells that cause autoimmune disease by dampening down their aggression against the body’s own tissues while converting them into cells capable of protecting against disease. This sort of conversion has been earlier applied to allergies, known as allergic desensitization, but its application to autoimmune diseases has only been accepted recently.

The Bristol researchers has now revealed how the administration of fragments of the proteins that are usually the target for attack leads to correction of the autoimmune response. Most significantly, their work reveals that effective treatment is achieved by gradually increasing the dose of antigenic fragment injected.

To determine how this type of immunotherapy works, the scientists delved inside the immune cells themselves to see which genes and proteins were turned on or off by the treatment. The scientists found changes in gene expression that help explain how effective treatment leads to conversion of aggressor into protector cells. The result is to restore self-tolerance whereby an individual’s immune system disregards its own tissues while remaining totally fortified to protect against infection.

By specifically targeting the cells at defect, this immunotherapeutic approach avoids the need for the immune suppressive drugs associated with unacceptable side effects such as infections, development of tumors and disruption of natural regulatory processes.

Prof. David Wraith, who led the research, said, “Insight into the molecular basis of antigen-specific immunotherapy opens up exciting new opportunities to enhance the selectivity of the approach while providing valuable markers with which to measure effective treatment. These findings have important implications for the many patients suffering from autoimmune conditions that are currently difficult to treat.”

This treatment strategy, which could enhance the lives of millions of people worldwide, is currently undergoing clinical development through biotechnology company Apitope, a spin-out from the University of Bristol.

Related Links:

University of Bristol


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.