We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Synthetic Printed Implants Prompt Spinal Regeneration in Model

By LabMedica International staff writers
Posted on 31 Jan 2019
Print article
Image: A three-dimensional printed, two-millimeter implant used as scaffolding to repair spinal cord injuries in rats. The circles surrounding the H-shaped core are hollow portals through which implanted neural stem cells can extend axons into host tissues (Photo courtesy of Jacob Koffler and Wei Zhu, University of California, San Diego).
Image: A three-dimensional printed, two-millimeter implant used as scaffolding to repair spinal cord injuries in rats. The circles surrounding the H-shaped core are hollow portals through which implanted neural stem cells can extend axons into host tissues (Photo courtesy of Jacob Koffler and Wei Zhu, University of California, San Diego).
The potential use of three-dimensional (3D) printing to produce replacement components for the repair of spinal damage was demonstrated in a rat model system.

Up to now, three-dimensional printing of central nervous system (CNS) structures has not been accomplished, possibly owing to the complexity of CNS architecture. To rectify this situation, investigators at the University of California, San Diego (USA) used a three-dimensional microscale continuous projection printing method (MuCPP) to create a complex CNS structure for regenerative medicine applications in the spinal cord.

The MuCPP method enabled printing of three-dimensional biomimetic hydrogel scaffolds that were tailored to the dimensions of the rodent spinal cord. This process required only 1.6 seconds and was scalable to human spinal cord sizes and lesion geometries. In this regard, four-centimeter-sized implants modeled from MRI scans of actual human spinal cord injuries were printed within 10 minutes. The printed scaffolds contained dozens of 200-micrometer-wide channels that guided neural stem cell and axon growth along the length of the spinal cord injury.

The investigators tested the ability of MuCPP three-dimensional-printed scaffolds loaded with neural progenitor cells (NPCs) to support axon regeneration and form new "neural relays" across sites of complete spinal cord injury in vivo in rodents.

They reported in the January 14, 2019, online edition of the journal Nature Medicine that injured host axons regenerated into three-dimensional biomimetic scaffolds and synapsed onto NPCs implanted into the device. Implanted NPCs in turn extended axons out of the scaffold and into the host spinal cord below the injury to restore synaptic transmission and significantly improve the animal's ability to move.

"In recent years and papers, we have progressively moved closer to the goal of abundant, long-distance regeneration of injured axons in spinal cord injury, which is fundamental to any true restoration of physical function," said senior author Dr. Mark Tuszynski, professor of neuroscience at the University of California, San Diego.

Related Links:
University of California, San Diego

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.