We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.
Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

31 Oct 2018 - 02 Nov 2018
03 Nov 2018 - 07 Nov 2018

Bone Marrow Model Promotes Growth of Blood Cell Progenitors

By BiotechDaily International staff writers
Posted on 14 Jun 2018
Print article
Image: A scanning electron microscopy (SEM) images confirm the deposition of an extracellular matrix, which embeds cells, presumably of both stromal and blood origins (Photo courtesy of the University of Basel).
Image: A scanning electron microscopy (SEM) images confirm the deposition of an extracellular matrix, which embeds cells, presumably of both stromal and blood origins (Photo courtesy of the University of Basel).
A recently developed culture technique has enabled researchers to establish conditions that mimic human bone marrow niches and support the maintenance of some hematopoietic stem and progenitor cell lines.

In adult humans, hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment. The understanding of human hematopoiesis and the associated niche biology remains limited, due to difficulties in obtaining human source materials and limitations of existing in vitro culture models. The establishment of a functionalized in vitro BM system would offer an experimentally accessible and tunable platform to study human hematopoiesis.

In an effort to create such an in vitro BM system, investigators at the University of Basel (Switzerland) and ETH Zurich (Switzerland) developed an artificial tissue model system in which human blood stem cells remained functional for a prolonged period of time.

The system was described in the June 4, 2018, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences. A perfusion bioreactor vessel was used to house a three-dimensional ceramic-based human BM analog, which recapitulated some of the hematopoietic niche elements. The model system comprised the bone-like scaffold, which was functionalized by human stromal and osteoblastic cells and by the extracellular matrix deposited by the cells during perfusion culture in bioreactors. The resulting tissue exhibited compositional and structural features of human BM while supporting the maintenance of HSPCs. This functionality was due to the compartmentalization of phenotypes in the bioreactor system, where committed blood cells are released into the liquid phase and HSPCs preferentially resided within the engineered BM tissue, establishing physical interactions with the stromal compartment.

In addition, the functional BM model enabled the investigators to demonstrate the possibility of perturbing HSPCs’ behavior within the model's three-dimensional niches by molecular customization or injury simulation.

"We could use bone and bone marrow cells from patients to create an in vitro model of blood diseases such as leukemia, for example. Importantly, we could do this in an environment that consists exclusively of human cells and which incorporates conditions tailored to the specific individual," said senior author Dr. Ivan Martin, professor of tissue engineering at the University of Basel and contributing author Dr. Timm Schroeder, professor for cell systems dynamics at ETH Zurich.

Related Links:
University of Basel
ETH Zurich


Print article

Channels

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2018 Globetech Media. All rights reserved.