We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cross-linked Hydrogels Developed for 3D Printing

By LabMedica International staff writers
Posted on 08 Jan 2018
Print article
Image: A three-dimensional hydrogel construct fabricated through drop-on-drop multi-material bio-printing (Photo courtesy of Osaka University).
Image: A three-dimensional hydrogel construct fabricated through drop-on-drop multi-material bio-printing (Photo courtesy of Osaka University).
A team of Japanese biomedical engineers has developed a novel, enzyme-based three-dimensional printing method that enables in vitro growth of complex cellular structures.

Investigators at Osaka University (Japan) reported in the December 11, 2017, online edition of the journal Macromolecular Rapid Communications that they had developed a cytocompatible inkjet bio-printing approach that enabled the use of a variety of bio-inks to produce hydrogels with a wide range of characteristics.

Stabilization of bio-inks was obtained by using the enzyme horseradish peroxidase (HRP) to catalyze cross-linking within the hydrogel while consuming cytotoxic hydrogen peroxide (H2O2) in the process.

Three-dimensional cell-laden hydrogels were fabricated by the sequential dropping of a polymer-containing bio-ink that had been cross-linked through the enzymatic reaction and H2O2 onto droplets of another bio-ink that contained the polymer, HRP, and cells. The HRP in the second drop neutralized the H2O2 carried over in the first drop. This approach promoted adhesion of the biological ink droplets and allowed printing of complex biological structures. The approximately 95% viability of mouse fibroblasts enclosed in a bio-ink hydrogel consisting of gelatin and hyaluronic acid derivatives and subsequent elongation of the cells demonstrated the suitability of this three-dimensional printing approach.

"Advances in induced pluripotent stem cell technologies have made it possible for us to induce stem cells to differentiate in many different ways," said senior author Dr. Makoto Nakamura, professor of biochemical engineering at Osaka University. "Now we need new scaffolds so we can print and support these cells to move closer to achieving full three-dimensional printing of functional tissues. Our new approach is highly versatile and should help all groups working to this goal."

Related Links:
Osaka University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.