We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Automated Image Analysis Software Reliably Identifies Positive MRSA

By LabMedica International staff writers
Posted on 24 Feb 2016
Print article
Image: Automated colony-scoring of chromogenic media agar plates for the detection of MRSA using the WASPLab image analysis software (Photo courtesy of COPAN Group/PRNewsFoto).
Image: Automated colony-scoring of chromogenic media agar plates for the detection of MRSA using the WASPLab image analysis software (Photo courtesy of COPAN Group/PRNewsFoto).
In a unique-in-its-class digital microbiology study of almost 60,000 samples, new WASPLab software developed for automated colony-scoring of chromegenic media plates provided superior detection of methicillin-resistant Staphylococcus aureus (MRSA).

The groundbreaking results came from an international multicenter study, testing 57,690 samples, where the WASPLab platform software “Chromogenic Detection Module” (CDM) from COPAN Diagnostics, Inc. (Murrieta, CA, USA) detected and segregated positive from negative MRSA samples using chromogenic agar with a sensitivity of 100% and a specificity of 90%–96% (varying by location). The software detected an additional 153 positive MRSA patients that were missed by manual reading.

The study's sample size and level of sensitivity of 100% “makes this study unmatched in the industry," said Norman Sharples, CEO, Copan Diagnostics.

CDM utilizes an algorithm to identify presence of colonies on a plate and distinguish between different colors to group into negative and positive cultures. The study focused on identifying MRSA using chromogenic agar from 3 different manufacturers (BD Diagnostics, bioMeriéux, Bio-Rad Laboratories) that produce growth with different pigmentation colors. The cultures were read automatically by WASPLab CDM and manually by a laboratory professional. The laboratory professionals were blinded to the software's results.

CDM's reading threshold is intentionally set with a high level of prudency designed so it does not miss a positive MRSA culture. In fact, in this large study, CDM never reported any manual positive plates as negative, demonstrating 100% sensitivity. The 90%–96% specificity score varies by location due to the conservative threshold of the CDM settings, which set the limitations low in order to avoid any "false negative" interpretation. Most importantly, the data from this study suggests that the CDM software is somewhat more sensitive than manual reading of plate cultures.

The software’s “capability reduces the hands-on time considerably,” said Dr. Sharples, “CDM is not meant to be used without the technologist, but to provide the technologist with valuable tools that rapidly pre-screen cultures, detect the presence of specific organisms of interest or known pathogens, then segregate cultures into positive and negative groups that enable faster turnaround times and actionable results within the therapeutic window."

The results of the data show that the WASPLab CDM can be used to accurately sort regardless of the chromogenic substrate. Its application for MRSA is only the first step in a series of algorithms developed by COPAN and available to WASPLab users to further the relevance and speed of laboratory results.

"Clinical microbiology relies heavily on the reading and interpretational skills of the technologist and microbiologist. In a time of diminishing resources and increasing work volumes the advancement in these imaging algorithms supports the value of digital microbiology and full laboratory automation for the continued output of quality results and improved patient care," concluded Dr. Sharples.

The study, by Faron ML et al., was published online ahead of print December 30, 2015, in the Journal of Clinical Microbiology.

Related Links:

COPAN Group


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.