We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Diabetes Researchers Convert Stem Cells into Insulin-Producing Cells

By LabMedica International staff writers
Posted on 11 Dec 2018
Print article
Image: Endodermal cells, they form organs such as lung, liver and pancreas (Photo courtesy of IDR, Helmholtz Zentrum München).
Image: Endodermal cells, they form organs such as lung, liver and pancreas (Photo courtesy of IDR, Helmholtz Zentrum München).
A team of stem cell biologists working on the problem of pancreas replacement in patients with type I diabetes identified the extrinsic and intrinsic signaling mechanisms that coordinate the fate-determining transcriptional events underlying the maturation of bipotent pancreatic progenitors and used this information to convert these pancreatic progenitors - derived from human embryonic stem cells - to insulin-producing islet cells.

The pancreas originates from two epithelial evaginations (meaning to turn an organ or part inside out) of the foregut, which consist of multipotent epithelial progenitor cells that organize into a complex tubular epithelial network. The trunk domain of each epithelial branch consists of bipotent pancreatic progenitors that give rise to both duct and endocrine lineages.

Investigators at Helmholtz Zentrum München (Munich, Germany) reported in the November 28, 2018, online edition of the journal Nature that single-cell analysis of pancreatic bipotent pancreatic progenitors derived from human embryonic stem cells revealed that cell confinement was a prerequisite for endocrine specification, whereas spreading drove the progenitors towards a ductal fate. Mechanistic studies identified the interaction of extracellular matrix (ECM) with integrin alpha5 as the extracellular cue that controlled the fate of bipotent pancreatic progenitors.

While ECM-integrin alpha5 signaling promoted differentiation towards the duct lineage, disruption of this signaling cascade stimulated hormone development. This cascade could be disrupted genetically or with drugs to convert bipotent pancreatic progenitors derived from human embryonic stem cells into hormone-producing islet cells.

"We have now been able to map the signal that determines whether pancreatic progenitor cells will become endocrine, such as insulin-producing beta cells or duct cells", said senior author Dr. Henrik Semb, director of the institute of translational stem cell research at Helmholtz Zentrum München. "The cells are analogous to pinballs, whose ultimate score is based on the sum of pin encounters. They are constantly moving around within the developing pancreas, leading to frequent environmental changes. We show that the exposure to specific extracellular matrix components determines the ultimate destiny of the cells."

"We can now replace significant numbers of empirically derived substances, whose mode of action in current state-of-the-art differentiation protocols is largely unknown, with small molecule inhibitors that target specific components of the newly identified mechano-signaling pathway," said Dr. Semb. "Our discovery breaks new ground because it explains how multipotent progenitor cells mature into different cell types during organ formation. It also gives us the tools to recreate the processes in the laboratory, to more precisely engineer cells that are lost or damaged in severe diseases, such as type I diabetes and neurodegenerative diseases, for future cell replacement therapies."

Related Links:
Helmholtz Zentrum München

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.