We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Mechanism Explains Why Damaged DNA Accumulates in ALS Neurons

By LabMedica International staff writers
Posted on 13 Nov 2018
Print article
Image: Identification of a link between motor neurons\' inability to repair oxidative genome damage in ALS suggests that DNA ligase-targeted therapies may prevent or delay disease progression (Photo courtesy of Hegde Laboratory, Houston Methodist Hospital).
Image: Identification of a link between motor neurons\' inability to repair oxidative genome damage in ALS suggests that DNA ligase-targeted therapies may prevent or delay disease progression (Photo courtesy of Hegde Laboratory, Houston Methodist Hospital).
A team of neurodegenerative disease researchers identified a mechanism that leads to the accumulation of damaged DNA in neurons that characterizes amyotrophic lateral sclerosis (ALS).

ALS is a neurodegenerative disease characterized by the selective and progressive death of upper and lower motor neurons. This leads to progressive muscle weakness, and death of the patient usually occurs within two to five years after the onset of symptoms. In approximately 10% of patients, there is a clear family history.

Genome damage and defective repair have been linked to neurodegeneration in conditions such as ALS. However, the specific mechanisms involved remain unclear. In this regards, investigators at Houston Methodist Hospital (TX, USA) identified defects - caused by mutations in the RNA/DNA-binding protein FUS - in DNA nick ligation and oxidative damage repair in a subset of ALS patients.

FUS rapidly appears at sites of DNA damage, which suggests that it is orchestrating the DNA repair response. The function of FUS in the DNA damage response in neurons involves a direct interaction with histone deacetylase 1 (HDAC1). The recruitment of FUS to double-strand break sites is important for DNA damage response signaling and for repair of DNA damage. FUS loss-of-function results in increased DNA damage in neurons. Mutations in the FUS nuclear localization sequence impair the poly (ADP-ribose) polymerase (PARP)-dependent DNA damage response. This impairment leads to neurodegeneration and FUS aggregate formation. Such FUS aggregates are a pathological hallmark of ALS.

The investigators examined the connection between FUS function and DNA ligation defects in multiple model systems, including CRISPR/Cas9-mediated FUS knockout (KO) cells, familial ALS patient-derived induced pluripotent stem cells (iPSCs) with FUS mutations, motor neurons differentiated from these patient-derived iPSCs, and spinal cord tissue with FUS pathology from ALS patients.

Result published in the September 11, 2018, online edition of the journal Nature Communications revealed that loss of nuclear FUS caused DNA nick ligation defects in motor neurons due to reduced recruitment to DNA strand breaks of the XRCC1/LigIII enzyme complex. DNA ligation defects in ALS patient-derived iPSC lines carrying FUS mutations and in motor neurons generated therefrom were rescued by CRISPR/Cas9-mediated correction of the mutation.

These findings revealed a pathway of defective DNA ligation in FUS-linked ALS and suggested that LigIII-targeted therapies could prevent or delay progression of the disease.

Related Links:
Houston Methodist Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.