We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.
Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Map Reveals How Zika Virus Associates with Host Cell Proteins

By BiotechDaily International staff writers
Posted on 05 Sep 2018
Print article
Image: A photomicrograph showing Zika virus particles in red, within the endomembrane system of African green monkey kidney cells (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
Image: A photomicrograph showing Zika virus particles in red, within the endomembrane system of African green monkey kidney cells (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
A team of viral molecular biologists has mapped host cell protein interaction profiles for each of the ten polypeptides encoded in the Zika virus (ZIKV) genome, generating a protein topology network comprising 3033 interactions amongst 1224 unique human polypeptides.

Zika virus is a membrane enveloped Flavivirus with a positive strand RNA genome, transmitted by Aedes mosquitoes. The geographical range of ZIKV has dramatically expanded in recent decades resulting in increasing numbers of infected individuals, and the spike in ZIKV infections has been linked to significant increases in both Guillain-Barré syndrome and microcephaly. While a large number of host proteins have been physically and/or functionally linked to other Flaviviruses, very little is known about the virus-host protein interactions established by ZIKV.

Investigators at the University of Toronto (Canada) generated 10 strains of human cells with each strain expressing one Zika protein. By adding a low molecular weight "epitope" tag to each viral protein they could retrieve these proteins using an antibody that bound to the tag. In addition, they used proximity labeling to identify closely linked viral and human proteins.

Results reported in the July 23, 2018, online edition of the journal Molecular & Cellular Proteomics revealed a set of host cell protein interaction profiles for each of the ten polypeptides encoded in the ZIKV genome. This protein topology network comprised 3033 interactions amongst 1224 unique human polypeptides. This network was enriched in proteins with roles in polypeptide processing and quality control, vesicle trafficking, RNA processing, and lipid metabolism. More than 60% of the network components had been previously implicated in other types of viral infections; the remaining proteins comprised hundreds of new putative ZIKV functional partners.

"A better understanding of these processes will allow us to identify specific vulnerabilities in the virus life cycle where antiviral drugs can be targeted," said senior author Dr. Brian Raught, professor of proteomics and molecular medicine at the University of Toronto.

Related Links:
University of Toronto


Print article

Channels

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2018 Globetech Media. All rights reserved.