We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Electron Microscopy Technique Boosts Development of Antibody-Based Vaccines

By LabMedica International staff writers
Posted on 22 Aug 2018
Print article
Image: With the new method, the researchers were able to image polyclonal antibody/HIV envelope complexes at a resolution of 4.7 angstroms. At this resolution, the researchers discovered that in rabbits, antibodies specific to a vulnerable site on HIV\'s outer glycan layer (blue shapes) are structurally highly convergent and closely resemble a previously isolated monoclonal antibody (green and teal ribbons) (Photo courtesy of Dr. Lars Hangartner, Scripps Research Institute).
Image: With the new method, the researchers were able to image polyclonal antibody/HIV envelope complexes at a resolution of 4.7 angstroms. At this resolution, the researchers discovered that in rabbits, antibodies specific to a vulnerable site on HIV\'s outer glycan layer (blue shapes) are structurally highly convergent and closely resemble a previously isolated monoclonal antibody (green and teal ribbons) (Photo courtesy of Dr. Lars Hangartner, Scripps Research Institute).
The novel use of an electron microscope imagining technique enabled vaccine developers to follow the design process of structure-based vaccines in real time.

Characterizing polyclonal antibody responses via currently available methods is inherently complex and difficult. Mapping epitopes in an immune response is typically incomplete, which creates a barrier to fully understanding the humoral response to antigens and hinders rational vaccine design efforts.

To improve the antibody design process, investigators at the Scripps Research Institute (La Jolla, CA, USA) developed a method for characterizing polyclonal responses by using electron microscopy to produce negatively stained images of viruses bound to potential neutralizing antibodies. They applied this method to the immunization of rabbits with an HIV-1 envelope glycoprotein vaccine candidate, BG505 SOSIP.664.

The investigators reported in the August 7, 2018, online edition of the journal Immunity that they detected known epitopes within the polyclonal sera and revealed how antibody responses evolved during the prime-boosting strategy to ultimately result in a neutralizing antibody response. They uncovered previously unidentified epitopes, including an epitope proximal to one recognized by human broadly neutralizing antibodies as well as potentially distracting non-neutralizing epitopes.

High-resolution, three-dimensional images of the antibodies with their viral targets were obtained using cryo-electron microscopy (cryo-EM). Cryo-EM is an analytical technique that provides near-atomic structural resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

"We can now watch antibody responses evolve almost in real time," said senior author Dr. Lars Hangartner, associate professor at the Scripps Research Institute. "This method has the potential to change the pace at which we can develop vaccines."

Related Links:
Scripps Research Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.