We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Protein Droplets Stimulate Neurodegenerative Fibril Clumping

By LabMedica International staff writers
Posted on 03 May 2018
Print article
Image: Dense FUS protein fibrils form in the absence of nuclear-import receptors (NIRs, left), but are disrupted when NIRs are present (right) (Photo courtesy of Dr. James Shorter, University of Pennsylvania).
Image: Dense FUS protein fibrils form in the absence of nuclear-import receptors (NIRs, left), but are disrupted when NIRs are present (right) (Photo courtesy of Dr. James Shorter, University of Pennsylvania).
A team of neurodegenerative disease researchers has identified a molecular mechanism that prevents or reverses the formation of insoluble protein aggregates that characterize several brain disorders, including frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS).

Members of the class of RNA-binding proteins (RBPs) with prion-like domains (PrLDs) experience a phase transition to a functional liquid form. In this form, RBPs can mature into abnormal hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Furthermore, several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mistakenly associate with cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibril formation and cause disease.

Investigators at the University of Pennsylvania (Philadelphia, USA) investigated the role of RBPs in the neurodegenerative disease process. They reported in the April 19, 2018, online edition of the journal Cell that nuclear-import receptors (NIRs) specifically chaperoned and potently disaggregated wild-type and disease-linked RBPs bearing a nuclear-localization sequence (NLS). A nuclear localization sequence is an amino acid signal that "tags" a protein for import into the cell nucleus by nuclear transport.

The investigators added NIRs to aggregates of TDP-43 and FUS proteins. They found that by increasing the concentration of NIRs in vitro, clumps of RBPs quickly dissolved. NIRs also dissolved cytoplasmic clumps in cells, and functional RBPs were returned to the nucleus. In addition, when the expression of NIRs was increased in fruit fly disease models, lifespan of the insects was extended and degeneration was reduced.

“Clumps that form from these disease proteins are composed of sticky fibrils that damage nerve cells,” said senior author Dr. James Shorter, associate professor of biochemistry and biophysics at the University of Pennsylvania. “We want to reverse the formation of these clumps and put the RNA-binding proteins back in their proper place, inside the nucleus.”

Related Links:
University of Pennsylvania

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.