We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Lung Progenitor Cells Enable Culture of 3D Organoids for Studies

By LabMedica International staff writers
Posted on 15 Mar 2018
Print article
Image: Mouse (left) and human (right) alveolar progenitor cells grow into large lung organoids in culture, and make multiple types of epithelial cells including gas exchange type 1 cells (red) and surfactant-producing type 2 cells (green) (Photo courtesy of the Morrisey Laboratory, University of Pennsylvania).
Image: Mouse (left) and human (right) alveolar progenitor cells grow into large lung organoids in culture, and make multiple types of epithelial cells including gas exchange type 1 cells (red) and surfactant-producing type 2 cells (green) (Photo courtesy of the Morrisey Laboratory, University of Pennsylvania).
An in vitro system for growth of three-dimensional lung organoids was used to characterize a line of alveolar stem cells that plays a critical role in repairing lung tissues damaged by severe influenza or other respiratory ailments such as chronic obstructive pulmonary disease (COPD).

Functional tissue regeneration is required for the restoration of normal organ function after severe injury. Some organs, such as the intestine, harbor active stem cells throughout homeostasis and regeneration; more quiescent organs, such as the lung, often contain facultative progenitor cells that are recruited after injury to participate in regeneration.

To better understand the processes involved in lung tissue regeneration, investigators at the University of Pennsylvania (Philadelphia, USA) examined the epithelial cells that line the surfaces of lung gas-exchange alveoli for stem cell behavior that could restore normal respiratory function after severe injury.

The investigators reported in the February 28, 2018, online edition of the journal Nature that they had identified an alveolar epithelial progenitor (AEP) lineage, which was embedded in a larger population of epithelial cells called alveolar type 2 cells (AT2s). AEPs were shown to be a stable lineage during alveolar homeostasis but expanded rapidly to regenerate a large proportion of the alveolar epithelium after acute lung injury. AEPs exhibited a distinct transcriptome, epigenome, and functional phenotype and responded specifically to Wnt and fibroblast growth factor (FGF) signaling.

Human AEPs could be selectively isolated by targeting the conserved cell surface marker TM4SF1. Once isolated, these cells were used as functional human alveolar epithelial progenitor cells for growing three-dimensional lung organoids.

"From our organoid culture system, we were able to show that AEPs are an evolutionarily conserved alveolar progenitor that represents a new target for human lung regeneration strategies," said senior author Dr. Edward E. Morrisey, professor of cell and developmental biology at the University of Pennsylvania. "One of the most important places to better understand lung regeneration is in the alveoli, the tiny niches within the lung where oxygen is taken up by the blood and carbon dioxide is exhaled. To better understand these delicate structures, we have been mapping the different types of cells within the alveoli. Understanding cell-cell interactions should help us discover new players and molecular pathways to target for future therapies."

Related Links:
University of Pennsylvania

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.