We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Modified CRISPR/Cas9 Identifies Genes that Protect against PD

By LabMedica International staff writers
Posted on 25 Oct 2017
Print article
Image: A scanning electron microscope (SEM) image of the Parkinson\'s disease model yeast Saccharomyces cerevisiae (Photo courtesy of Wikimedia Commons).
Image: A scanning electron microscope (SEM) image of the Parkinson\'s disease model yeast Saccharomyces cerevisiae (Photo courtesy of Wikimedia Commons).
A team of molecular biologists working with a yeast model of Parkinson's disease (PD) used a modified version of the CRISPR/Cas9 genome-editing tool to identify genes that protect against the toxicity of the PD protein alpha-synuclein.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs.

Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

For the current study, investigators at the Massachusetts Institute of Technology (Cambridge, MA, USA) modified the CRISPR/Cas9 complex by deactivating the Cas9 enzyme's cutting ability and engineering the protein so that after binding to a target site, it recruited transcription factors (proteins that activate genes).

CRISPR is normally used to edit or delete genes from living cells. However, the MIT team adapted it to randomly turn on or off distinct gene sets across large populations of cells, allowing the researchers to identify genes from the yeast Saccharomyces cerevisiae, which has been extensively used as a model to systematically study and identify genes involved in neurodegenerative diseases that protected the cells from a protein associated with Parkinson's disease.

The modified gene-editing tool was named PRISM (Perturbing Regulatory Interactions by Synthetic Modulators). It emerged as a screening platform that used randomized CRISPR/Cas transcription factors to globally perturb transcriptional networks.

The investigators reported in the October 5, 2017, issue of the journal Molecular Cell that by applying PRISM to a yeast model of Parkinson’s disease (PD), they identified guide RNAs (gRNAs) that modulated transcriptional networks and protected cells from alpha-synuclein (alphaSyn) toxicity. One gRNA identified in this screen outperformed the most protective suppressors of alphaSyn toxicity reported previously.

"What we decided to do was take a completely unbiased approach where instead of targeting individual genes of interest, we would express randomized guides inside of the cell," said senior author Dr. Timothy Lu, associate professor of electrical engineering, computer science, and biological engineering at the Massachusetts Institute of Technology. "Using that approach, can we screen for guide RNAs that have unusually strong protective activities in a model of neurodegenerative disease.

The state of the art right now is targeting two or three genes simultaneously and then looking at the effects, but we think that perhaps the gene sets that need to be modulated to address some of these diseases are actually broader than that."

Related Links:
Massachusetts Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.