We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Advanced Proteomics Strategy Identifies Promising Drug Target

By LabMedica International staff writers
Posted on 09 Oct 2017
Print article
Image: The Crystallographic structure of NR0B1 (rainbow colored) complexed with the nuclear receptor protein LRH-1 (Liver receptor homolog-1) (Photo courtesy of Wikimedia Commons).
Image: The Crystallographic structure of NR0B1 (rainbow colored) complexed with the nuclear receptor protein LRH-1 (Liver receptor homolog-1) (Photo courtesy of Wikimedia Commons).
Use of an advanced proteomics strategy led to the discovery of a protein in non-small-cell lung cancer (NSCLC) cells that could be targeted by low molecular weight drugs.

The transcription factor NRF2 (Nuclear factor (erythroid-derived 2)-like 2) is a master regulator of the cellular antioxidant response, and it is often genetically activated in NSCLCs by, for instance, mutations in the negative regulator KEAP1 (Kelch-like ECH-associated protein 1). While direct drug-based inhibition of NRF2 has not been possible (NRF2 regulates the activities of genes expressed in cell types throughout the body, so a powerful NRF2-blocking agent would have excessive side effects), its overexpression modifies biochemical networks in cancer cells in a fashion that may create special vulnerabilities.

Investigators at The Scripps Research Institute (La Jolla, CA, USA) used chemical proteomics to map druggable proteins that were selectively expressed in KEAP1-mutant NSCLC cells. They reported in the September 28, 2017, online edition of the journal Cell that principal among these proteins was NR0B1, an atypical orphan nuclear receptor that was shown to engage in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. NR0B1 is located normally in the nucleus in lung cancer cells as a component of a larger protein complex that regulates gene expression.

The investigators identified small molecules that covalently targeted a conserved cysteine within the NR0B1 protein interaction domain, and they demonstrated that these compounds disrupted NR0B1 complexes and impaired the anchorage-independent growth of KEAP1-mutant cancer cells.

"This new approach shows promise for identifying previously unrecognized druggable targets in cancers that lack effective treatments," said senior author Dr. Benjamin F. Cravatt, professor of molecular medicine at The Scripps Research Institute.

Related Links:
The Scripps Research Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.