Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Interaction of Cell Surface Glycoproteins Drives Tumor Metastasis

By BiotechDaily International staff writers
Posted on 16 Aug 2017
Print article
Image: A photomicrograph of brain tumor section (Photo courtesy of the Brain Tumour Research Centre, University of Portsmouth).
Image: A photomicrograph of brain tumor section (Photo courtesy of the Brain Tumour Research Centre, University of Portsmouth).
Cancer researchers have shown how the interaction between two classes of cell surface glycoprotein molecules determines when a tumor will metastasize and release cells that migrate and generate secondary growths.

Cells in a low-grade tumor bind very tightly together, however the cells become less adhesive as the tumor becomes malignant. Expression of the cell adhesion molecule (CAM), Sialyl Lewis X (CD15s) correlates with cancer metastasis, while expression of E-selectin (CD62E) is stimulated by the cytokine TNF-alpha. CD15s/CD62E interaction plays a key role in the homing process of circulating leukocytes.

Investigators at the University of Portsmouth (United Kingdom) investigated the interaction of CD15s and CD62E in brain metastasis-related cancer cell adhesion. CD15s and CD62E were characterized in human brain endothelium (hCMEC/D3), primary non-small cell lung cancer (NSCLC), and metastatic NSCLC using immunocytochemistry, Western blotting, flow cytometry, and immunohistochemistry in human brain tissue sections.

They reported in the July 10, 2017, online edition of the International Journal of Molecular Sciences that CD15s was only faintly expressed on hCMEC/D3, while high levels were observed on primary NSCLC cells with expression highest on metastatic NSCLC cells. CD62E was highly expressed on hCMEC/D3 cells activated with TNF-alpha, with lower levels on primary and metastatic NSCLC cells. CD15s and CD62E were expressed on lung metastatic brain biopsies. CD15s/CD62E interaction was localized at adhesion sites of cancer cell - brain endothelium. Immune blocking of CD15s significantly decreased cancer cell adhesion to brain endothelium under static and shear stress conditions, highlighting the role of CD15s - CD62E interaction in brain metastasis.

Senior author Dr. Geoff Pilkington, head of the Brain Tumour Research Centre at the University of Portsmouth, said, "Although this work is still at an early stage, we have demonstrated key elements that are associated with tumor cell binding to blood vessels and this may provide a target for future drug development to prevent the development of secondary tumors in the brain. Increasing our understanding of the adhesive properties of tumors may also help to develop new treatments to halt the development and spread of primary brain tumors."

Related Links:
University of Portsmouth


Print article

Channels

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2017 Globetech Media. All rights reserved.