We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Expression Suggests Sexes Evolve Differently

By LabMedica International staff writers
Posted on 18 May 2017
Print article
Image: A recent study found that about 6,500 genes are expressed differently in men and women (Photo courtesy of the Weizmann Institute of Science).
Image: A recent study found that about 6,500 genes are expressed differently in men and women (Photo courtesy of the Weizmann Institute of Science).
A team of molecular geneticists has found that a large number of genes are expressed differently in men and women, which begins to explain why that despite sharing almost identical genomes the two sexes are distinctly dimorphic, with dissimilar disease susceptibilities and mutation rates.

To perform this study, investigators at the Weizmann Institute of Science called upon the resources of the Genotype-Tissue Expression project. The GTEx project was designed to provide to the scientific community a resource with which to study human gene expression and regulation and its relationship to genetic variation. This project collects and analyzes multiple human tissues from donors who are also densely genotyped, to assess genetic variation within their genomes. By analyzing global RNA expression within individual tissues and treating the expression levels of genes as quantitative traits, variations in gene expression that are highly correlated with genetic variation. Correlations between genotype and tissue-specific gene expression levels will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx will help researchers to understand inherited susceptibility to disease and will be a resource database and tissue bank for many studies in the future.

Using information made available by the GTEx project, the Weizmann Institute investigators comprehensively mapped human sex-differential genetic architecture across 53 tissues. By analyzing GTEx RNA-sequencing data from 544 adults, they identified approximately 6,500 genes that were differentially expressed in the reproductive tracts and tissues common to both sexes.

The investigators reported in reported in the February 7, 2017, online edition of the journal BMC Biology that sex-differential genes were related to various biological systems, which suggested new insights into the pathophysiology of diverse human diseases. They also identified a significant association between sex-specific gene transcription and reduced selection efficiency and accumulation of deleterious mutations, which might affect the prevalence of different traits and diseases. Many of the sex-specific genes that also underwent reduced selection efficiency were essential for successful reproduction in men or women. This seeming paradox might partially explain the high incidence of human infertility.

"In many species, females can produce only a limited number of offspring while males can, theoretically, father many more; so the species' survival will depend on more viable females in the population than males," said senior author Dr. Shmuel Pietrokovski, professor of molecular genetics at the Weizmann Institute of Science. "Thus natural selection can be more "lax" with the genes that are only harmful to males. Paradoxically, sex-linked genes are those in which harmful mutations are more likely to be passed down, including those that impair fertility. From this vantage point, men and women undergo different selection pressures and, at least to some extent, human evolution should be viewed as co-evolution. But the study also emphasizes the need for a better understanding of the differences between men and women in the genes that cause disease or respond to treatments."

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Cancer Mutation Profiling Liquid Kit
OncoScreen Plus

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.