We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Heating Method Developed for Rapid Delivery of Macromolecules

By LabMedica International staff writers
Posted on 04 Apr 2017
Print article
Image: A scanning-electron microscope (SEM) image of chemically-fixed HeLa cancer cells on the gold nanopyramid substrate. Following nanosecond laser pulses, the tips of the pyramids create tiny holes in the cell membranes, allowing molecular cargo to diffuse into the cells (Photo courtesy of Harvard University).
Image: A scanning-electron microscope (SEM) image of chemically-fixed HeLa cancer cells on the gold nanopyramid substrate. Following nanosecond laser pulses, the tips of the pyramids create tiny holes in the cell membranes, allowing molecular cargo to diffuse into the cells (Photo courtesy of Harvard University).
A team of cancer researchers developed a precise and controlled mechanism that rapidly introduces molecules as large as proteins or nucleic acids into living cells.

Previously, investigators at Harvard University had shown that gold, pyramid-shaped microstructures could focus nanosecond laser pulses into electromagnetic hotspots.

The investigators cultured HeLa cells directly on top of these pyramid structures in a growth solution containing specific cargo molecules. They focused a laser on the pyramids, and nanopulses of the laser light caused the hotspots at the tips of the pyramids to warm to a temperature of about 300 degrees Celsius. This localized heating generated bubbles at the tip of each pyramid. The bubbles inserted themselves into the membranes of the HeLa cells, opening brief pores, which allowed the target molecules to diffuse into the cells. The pores sealed very quickly, and the cells healed themselves and remained alive and dividing for an extended period. Clinically, this method could be used in ex vivo therapies, where unhealthy cells are taken out of the body, loaded with a drug or DNA, and reintroduced into the body.

The investigators optimized the fabrication technique to produce plasmonic structures that were ultrasmooth and precisely patterned over large areas. They used flow cytometry to characterize the delivery efficiency of cargos ranging in size from 0.6 to 2000 kiloDaltons into cells (up to 95% for the smallest molecule) and viability of cells (up to 98%).

The technique offered a throughput of 50,000 cells per minute, which could be scaled up as necessary. This technique was cost-effective, as each large-area photolithography substrate could be used to deliver cargo molecules to millions of cells, and switching to a nanosecond laser rendered the setup cheaper and easier to use. Furthermore, this approach offered additional desirable features such as spatial selectivity, reproducibility, minimal residual fragments, and cost-effective fabrication.

"It is great to see how the tools of physics can greatly advance other fields, especially when it may enable new therapies for previously difficult to treat diseases," said senior author Dr. Eric Mazur, professor of physics and applied physics at Harvard University.

The gold nanopyramid technique for molecular loading of living cells was described in the March 14, 2017, online edition of the journal ACS Nano.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.