We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Artificial Stem Cells Promote Cardiac Repair in Mouse Model

By LabMedica International staff writers
Posted on 05 Jan 2017
Print article
Image: Synthetic cardiac stem cells could offer therapeutic benefits without associated risks (Photo courtesy of Alice Harvey, North Carolina State University).
Image: Synthetic cardiac stem cells could offer therapeutic benefits without associated risks (Photo courtesy of Alice Harvey, North Carolina State University).
A team of biomedical engineers created a novel class of artificial stem cells that mimic the function of cardiac stem cells and aid repair of damaged heart tissue without danger of adverse immune response or the possibility of tumor generation.

Results of recent studies have indicated that stem cells exert their beneficial effects mainly through secretion of regenerative factors and membrane-based cell-cell interaction with the injured cells. Expanding on these findings, investigators at the University of North Carolina (Chapel Hill, USA) and North Carolina State University (Raleigh, USA) fabricated microparticles (CMMP, for cell-mimicking microparticles) from the biodegradable and biocompatible polymer poly(lactic-co-glycolic acid) or PLGA. The PLGA microparticles were loaded with growth factor proteins that had been harvested from cultured human cardiac stem cells. The particles were then coated with membranes from cardiac stem cells.

The investigators reported in the December 26, 2016, online edition of the journal Nature Communications that in a mouse model of myocardial infarction, injection of CMMPs led to preservation of viable myocardium and augmentation of cardiac functions similar to cardiac stem cell therapy. CMMPs (derived from human cells) did not stimulate T-cell infiltration in immuno-competent mice. In addition, since CMMPs are artificial constructs they cannot replicate, which eliminated the risk of tumor formation.

“The synthetic cells operate much the same way a deactivated vaccine works,” said senior author Dr. Ke Cheng, professor of molecular biomedical sciences at North Carolina State University and associate professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina. “Their membranes allow them to bypass the immune response, bind to cardiac tissue, release the growth factors, and generate repair, but they cannot amplify by themselves. So you get the benefits of stem cell therapy without risks. We are hoping that this may be a first step toward a truly off-the-shelf stem cell product that would enable people to receive beneficial stem cell therapies when they are needed, without costly delays.”

Related Links:
University of North Carolina
North Carolina State University
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.