We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mechanism Explains How Colon Cancer Suppressor Protein Works

By LabMedica International staff writers
Posted on 22 Dec 2016
Print article
Image: A micrograph showing invasive adenocarcinoma (the most common type of colorectal cancer). The cancerous cells are seen in the center and at the bottom right of the image (blue). Near normal colon-lining cells are seen at the top right of the image (Photo courtesy of Wikimedia Commons).
Image: A micrograph showing invasive adenocarcinoma (the most common type of colorectal cancer). The cancerous cells are seen in the center and at the bottom right of the image (blue). Near normal colon-lining cells are seen at the top right of the image (Photo courtesy of Wikimedia Commons).
The intracellular protein NLRC3 (NLR family CARD domain containing 3) blocks growth of colon cancer by suppressing activation of mTOR (Mechanistic target of rapamycin) signaling pathways.

NLRs (nucleotide-binding domain and leucine-rich repeats) belong to a large family of cytoplasmic sensors that regulate a diverse range of biological functions. One of these functions is to contribute to immunity against infectious diseases, but dysregulation of their functional activity leads to the development of inflammatory and autoimmune diseases. NLRC3 is a poorly characterized member of the NLR family and was identified in a genomic screen for genes encoding proteins bearing leucine-rich repeats (LRRs) and nucleotide-binding domains. Expression of NLRC3 was drastically reduced in the tumor tissue of patients with colorectal cancer compared to healthy tissues, highlighting an undefined potential function for this sensor in the development of cancer.

To learn more about a possible link between NLRC3 and colon cancer, investigators at St. Jude Children's Research Hospital (Memphis, TN, USA) worked with various mouse colon cancer models including those deficient or lacking in NLRC3.

The investigators reported in the December 12, 2016, online edition of the journal Nature that mice lacking NLRC3 were hyper-susceptible to colitis and development of colorectal tumors. A mouse strain with a tendency to develop colon polyps showed much greater tumor development when they lacked NLRC3, and overexpression of NLRC3 blocked tumor formation. The effect of NLRC3 was most dominant in enterocytes, in which it suppressed activation of the mTOR signaling pathways and inhibited cellular proliferation and stem-cell-derived organoid formation. NLRC3 associated with PI3K (Phosphoinositide 3-kinase) and blocked activation of the PI3K-dependent kinase AKT (Protein kinase B) following binding of growth factor receptors or Toll-like receptor 4.

"All of these complementary approaches to understanding NLRC3 allowed us to really nail it down that NLRC3 is important for protecting from abnormal colon cell growth, and when it is not present, tumors will develop," said senior author Dr. Kanneganti Thirumala-Devi, an immunologist at St. Jude Children's Research Hospital. "This suggested that if we can somehow induce NLRC3 expression clinically, it will block the signaling pathways that lead to tumorigenesis. In developing drug therapies, it might be difficult to target the PI3K-mTOR pathway itself, because it is such a central node in cell signaling. Thus, we could target NLRC3 itself and block tumorigenesis early on."

Related Links:
St. Jude Children's Research Hospital


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.