We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Loss of Neuronal Enzyme Underlies Rare Childhood Epileptic Encephalopathy

By Gerald M. Slutzky, PhD
Posted on 08 Dec 2016
Print article
Image: A neuron in culture was transduced with a virus that expresses a green fluorescent protein and an inhibitory RNA that causes loss of the DENND5A protein. The neurons where then stained with a marker of neuronal processes in red (Photo courtesy of Peter McPherson Laboratory, Montreal Neurological Institute, McGill University).
Image: A neuron in culture was transduced with a virus that expresses a green fluorescent protein and an inhibitory RNA that causes loss of the DENND5A protein. The neurons where then stained with a marker of neuronal processes in red (Photo courtesy of Peter McPherson Laboratory, Montreal Neurological Institute, McGill University).
A recessive mutation causing loss of an enzyme required for neuronal development was shown to underlie a rare form of childhood epileptic encephalopathy.

Epileptic encephalopathy, which is often linked to improper development of the brain, is a rare but devastating sub-form of epilepsy that results in severe mental and physical disabilities in children from birth. To better understand the genetic and mechanistic causes of this disease, investigators at McGill University (Montreal, Canada) and collaborators in Canada, Saudi Arabia, Jordan, and Germany performed whole exome sequencing on three children with epileptic encephalopathy from two families, one from Saudi Arabia and another from Jordan.

The investigators reported in the November 17, 2016, online edition of the American Journal of Human Genetics that epileptic encephalopathy, which featured cerebral calcifications and coarse facial features, was caused by recessive loss-of-function mutations in the gene DENND5A.

DENND5A contains a DENN domain, an evolutionarily ancient enzymatic module conferring guanine nucleotide exchange factor (GEF) activity to multiple proteins serving as GEFs for Rab proteins, which are key regulators of membrane trafficking. DENND5A is detected predominantly in neuronal tissues, and its highest levels occur during development. Knockdown of DENND5A leads to striking alterations in neuronal development.

Mechanistically, changes caused by lack of DENND5A activity appeared to result from upregulation of neurotrophin receptors, leading to enhanced downstream signaling. Neurotrophins are a family of proteins involved in the survival, development, and function of neurons.

"Our study demonstrates the importance of membrane trafficking in neuronal development and it provides a new pathophysiological mechanism for this disease type. This will allow physicians around the world to test if mutations in DENND5A are causing the disease in their patients, and also to provide genetic counseling for affected families," said first author Dr. Chanshuai Han, a neurodegenerative disease researcher at McGill Univesity.

Related Links:
McGill University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.