We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Blocking Mutant RNA Cures Huntington's Disease in Mouse Model

By Gerald M. Slutzky, PhD
Posted on 23 Nov 2016
Print article
Image: Photomicrographs of fibroblasts from patients with Huntington\'s disease marked with fluorescence. Top row: the cells have accumulated mutant RNA. Bottom row: the cells no longer show blocked RNA accumulations (Photo courtesy of the Center for Genomic Regulation).
Image: Photomicrographs of fibroblasts from patients with Huntington\'s disease marked with fluorescence. Top row: the cells have accumulated mutant RNA. Bottom row: the cells no longer show blocked RNA accumulations (Photo courtesy of the Center for Genomic Regulation).
Researchers seeking ways to treat Huntington's disease have suggested going after the messenger RNA that mediates between the mutant gene that causes the disease and the toxic protein that causes the neurological damage that characterizes it.

Huntington’s disease (HD) is caused by a dominant gene that encodes huntingtin protein. The 5' end of the HD gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, which is repeated multiple times. Normal persons have a CAG repeat count of between seven and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of huntingtin is broken down by the cell into toxic peptides, which contribute to the pathology of the syndrome. Recent evidence has also linked HD pathogenesis to stable hairpin RNAs formed by the mutant HTT expansion.

Investigators at the Center for Genomic Regulation (Barcelona, Spain) have presented evidence showing that a synthetic locked nucleic acid–modified antisense oligonucleotide complementary to the CAG repeat segment of the gene (LNA-CTG) preferentially bound to mutant HTT without affecting HTT mRNA or protein levels. They reported in the October 10, 2016, online edition of the Journal of Clinical Investigation that LNA-CTGs promoted neuroprotection by blocking the detrimental activity of CAG repeats within HTT mRNA.

LNA-CTGs produced rapid and sustained improvement of motor deficits in an R6/2 mouse HD model that was paralleled by persistent binding of LNA-CTG to the expanded HTT exon 1 transgene. Motor improvement was accompanied by a pronounced recovery in the levels of several neuronal markers that were severely impaired in R6/2 mice. Furthermore, in R6/2 mice, LNA-CTG blocked several pathogenic mechanisms caused by expanded CAG RNA, including small RNA toxicity.

"What we have observed in our study is that the mutated fragment acting as a conveyor-the so-called messenger RNA-is key in the pathogenesis," said senior author Dr. Eulàlia Martí, acting group leader of the genes and disease laboratory at the Center for Genomic Regulation. "The research on this disease being done by most groups around the world seeking new therapeutic strategies focuses on trying to prevent expression of the mutated protein. Our work suggests that blocking the activity of messenger RNA (the "conveyor"), would be enough to revert the alterations associated with Huntington's disease. We hope this will contribute to improving the strategies in place to find a cure."

Related Links:
Center for Genomic Regulation


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.