We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Engineered Ligand Protein Protects Mice from Developing Cancer

By LabMedica International staff writers
Posted on 04 Mar 2019
Print article
Image: A confocal microscope image shows the SA-4-1BBL (green color) bound to its receptor on an immune cell (red color) to initiate an immune activation cascade to fight cancer (Photo courtesy of the University of Louisville).
Image: A confocal microscope image shows the SA-4-1BBL (green color) bound to its receptor on an immune cell (red color) to initiate an immune activation cascade to fight cancer (Photo courtesy of the University of Louisville).
A team of cancer researchers has developed a recombinant protein molecule that, when injected into mice, was able to protect the animals against subsequent tumor challenge irrespective of the tumor type.

Investigators at the University of Louisville (Kentucky, USA) were working with SA-4-1BBL, an engineered oligomeric form of the 4-1BBL ligand protein. 4-1BB ligand is a membrane bound member of the TNF (tumor necrosis factor) superfamily that is expressed on activated B-lymphocytes, macrophages, and dendritic cells. The ligand is specific for the 4-1BB (CD137) receptor and may play a role in inducing the proliferation of activated peripheral blood T-lymphocytes. 4-1BB is a type two transmembrane glycoprotein receptor belonging to the TNF superfamily, expressed on activated T lymphocytes. It is currently of interest to immunologists as a co-stimulatory immune checkpoint molecule.

T-cells require two signals to become fully activated. A first signal, which is antigen-specific, is provided through the T-cell receptor (TCR), which interacts with peptide-MHC molecules on the membrane of antigen presenting cells (APC). A second signal, the co-stimulatory signal, is antigen nonspecific and is provided by the interaction between co-stimulatory molecules expressed on the membrane of APC and the T-cell.

Previous studies have shown that co-stimulation through the 4-1BB receptor generates robust CD8+ T-effector and memory responses. The only known ligand, 4-1BBL, is a trimeric transmembrane protein that has no co-stimulatory activity as a soluble molecule. Thus, agonistic antibodies to the receptor have been used for cancer immunotherapy in preclinical models and are currently being evaluated in the clinic.

The investigators reported in the February 15, 2019, issue of the journal Cancer Research that treatment with SA-4-1BBL as a single agent was able to protect mice against subsequent tumor challenge irrespective of the tumor type. Protection was longlasting (more than eight weeks) and a bona fide property of SA-4-1BBL, as treatment with an agonistic antibody to the 4-1BB receptor was ineffective in generating immune protection against tumor challenge.

Mechanistically, SA-4-1BBL significantly expanded IFNgamma-expressing, preexisting memory-like CD44+CD4+ T-cells and NK cells in naïve mice as compared with the agonistic antibody. In vivo blockade of IFNgamma or depletion of CD4+ T or NK cells, but not CD8+ T or B-cells, abrogated the immunopreventive effects of SA-4-1BBL against cancer.

“The novelty we are reporting is the ability of this molecule to generate an immune response that patrols the body for the presence of rare tumor cells and to eliminate cancer before it takes hold in the body,” said senior author Dr. Haval Shirwan, professor of microbiology and immunology at the University of Louisville. “Generally, the immune system will need to be exposed to the tumor, recognize the tumor as dangerous, and then generate an adaptive and tumor-specific response to eliminate the tumor that it recognizes. Thus, our new finding is very surprising because the immune system has not seen a tumor, so the response is not to the presence of a tumor. With advances in cancer screening technologies and genetic tools to identify high-risk individuals, we ultimately are hoping to have the opportunity to test the SA-4-1BBL molecule for immunoprevention in individuals who are predisposed to certain cancers, as well as in the presence of precancerous lesions.”

Related Links:
University of Louisville

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.