We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Targeted System Uses Conjugated Bacteria to Deliver Drugs

By LabMedica International staff writers
Posted on 31 Dec 2018
Print article
Image: NanoBEADS transporters were constructed by conjugating poly(lactic‐co‐glycolic acid) nanoparticles with tumor‐targeting Salmonella typhimurium bacteria (Photo courtesy of Virginia Tech).
Image: NanoBEADS transporters were constructed by conjugating poly(lactic‐co‐glycolic acid) nanoparticles with tumor‐targeting Salmonella typhimurium bacteria (Photo courtesy of Virginia Tech).
A novel delivery system for anti-cancer chemotherapeutic agents utilizes attenuated bacteria that have been conjugated to polymeric nanoparticles to transport the drugs via a targeted, passive process.

Cancer drug delivery is problematic due to systemic toxicity of the drugs and inadequate movement of such nanotherapeutic agents to cells in sites distant from blood vessels. In an attempt to solve these problems, investigators at Virginia Tech (Blacksburg, VA, USA) proposed that an attenuated bacterium could be exploited for autonomous targeted delivery of nanotherapeutics to currently unreachable sites.

For this purpose, the investigators selected Salmonella enterica serovar Typhimurium VNP20009 (S. typhimurium), as it had been thoroughly studied and had been tested successfully in a phase one clinical trial. For the current study, a nanoscale bacteria‐enabled autonomous drug delivery system (NanoBEADS) was developed in which the functional capabilities of the tumor‐targeting S. typhimurium were interfaced with poly(lactic‐co‐glycolic acid) nanoparticles. Poly(lactic-co-glycolic acid) is a copolymer which is used in a host of [U.S.] Food and Drug Administration approved therapeutic devices, owing to its biodegradability and biocompatibility.

The investigators evaluated the impact of nanoparticle conjugation on the ability of NanoBEADS' to invade cancer cells. This was done by examining intratumoral transport of beads in three-dimensional tumor spheroids in vitro, and the biodistribution of the beads in a mammary tumor model in vivo. The investigators reported in the December 5, 2018, online edition of the journal Advanced Science that intercellular self‐replication and translocation were the dominant mechanisms of bacteria intratumoral penetration and that nanoparticle conjugation did not impede the bacteria's intratumoral transport performance.

The investigators further demonstrated that NanoBEADS enhanced nanoparticle retention and distribution in solid tumors by up to a remarkable 100‐fold without requiring any externally applied driving force or control input.

"You can make the most amazing drugs, but if you cannot deliver it where it needs to go, it cannot be very effective," said senior author Dr. Bahareh Behkam, associate professor of mechanical engineering at Virginia Tech. "By improving the delivery, you can enhance efficacy."

"Its (salmonella's) job as a pathogen is to penetrate through the tissue," said Dr. Behkam. "What we thought is if bacteria are so good at moving through the tissue, how about coupling nanomedicine with the bacterium to carry that medicine much farther than it would passively diffuse on its own?"

Related Links:
Virginia Tech

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.