We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanoplatform Overcomes Kidney Cancer Drug Resistance

By LabMedica International staff writers
Posted on 03 Oct 2018
Print article
Image: A micrograph of the most common type of renal cell carcinoma (clear cell)—on right of the image; non-tumor kidney is on the left of the image (Photo courtesy of Wikimedia Commons).
Image: A micrograph of the most common type of renal cell carcinoma (clear cell)—on right of the image; non-tumor kidney is on the left of the image (Photo courtesy of Wikimedia Commons).
A team of cancer researchers reported the development of a novel "nanoplatform" technology that empowered existing chemotherapeutic drugs to overcome drug-resistance in Everolimus-resistant renal cell carcinoma.

Drug resistance is one of the significant clinical burdens in renal cell carcinoma (RCC). The development of drug resistance has been attributed to many factors, including impairment of apoptosis, elevation of the enzyme carbonic anhydrase IX (CA IX, a marker of tumor hypoxia), and infiltration of tumorigenic immune cells. Everolimus, a derivative of rapamycin, is currently used as an immunosuppressant to prevent rejection of organ transplants and in the treatment of renal cell cancer and other tumors.

To overcome the Everolimus-resistance (Evr-res) that appears in this type of cancer, investigators at Wayne State University (Detroit, MI, USA) used Sorafenib (Sor) - a kinase inhibitor drug approved for the treatment of primary kidney cancer (advanced RCC) - in combination with a novel tumor hypoxia directed nanoparticle (NP) loaded with a new class of apoptosis inducer, CA IX-C4.16. Copper-free "click" chemistry was utilized to conjugate SMA-TPGS (styrene-maleic acid -- D-alpha-tocopheryl polyethylene glycol succinate) with Acetazolamide (ATZ, a CA IX-specific targeting ligand).

The CA IX-SMA-TPGS labeled NPs were designed to selectively deliver their payload to the hypoxic tumor core. The NPs were further tagged with a clinically approved dye for evaluating hypoxic tumor core penetration and organ distribution.

The investigators reported in the August 30, 2018, online edition of the journal Biomaterials that imaging of a tumor spheroid treated with dye-labeled CA IX-SMA-TPGS revealed remarkable tumor core penetration that was modulated by CA IX-mediated targeting in hypoxic-A498 RCC cells. The significant cell killing effect with the synergistic combination of CA IX-C4.16 and Sor treatment suggested efficient reversal of Evr-resistance in A498 cells. Furthermore, treatment with the nanoplatform did not cause liver or kidney toxicity in mice.

“Our tumor hypoxia directed nanoparticle used in conjunction with the FDA-approved renal cell carcinoma treatment, Sorafenib, has had positive outcomes in our animal trials,” said senior author Dr Arun Iyer, assistant professor of pharmaceutical sciences at Wayne State University. “The nanoparticles can deliver the payload selectively to tumor tissue and penetrate deep into the tumor core and provoke significant tumor inhibition with marked safety. This new approach of using our nanoplatform will reopen doors that were once closed because drugs that had become ineffective to cancer treatment are now once again usable and effective. It is our hope that this research will one day soon be used in clinics for treating patients.”

Related Links:
Wayne State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.