We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Approved Drugs Effectively Suppress Growth of Lethal Pathogen

By LabMedica International staff writers
Posted on 24 Sep 2018
Print article
Image: N. fowleri growth is inhibited with a combination treatment of breast cancer drug tamoxifen and epiminolanosterol (left) as compared to the untreated amoebae (right) (Photo courtesy of the University of California San Diego).
Image: N. fowleri growth is inhibited with a combination treatment of breast cancer drug tamoxifen and epiminolanosterol (left) as compared to the untreated amoebae (right) (Photo courtesy of the University of California San Diego).
Some currently approved drugs were found to suppress the growth of the amoeba Naegleria fowleri by inhibiting enzymes in the organism's sterol biosynthesis pathway.

Naegleria fowleri is a free-living amoeba found primarily in warm, under-chlorinated swimming pools, lakes, and rivers that can also act as an opportunistic pathogen causing the severe brain infection, primary amebic meningoencephalitis (PAM), in humans. The high mortality rate of PAM (exceeding 97%) is attributed to (i) delayed diagnosis, (ii) lack of safe and effective anti-N. fowleri drugs, and (iii) difficulty of delivering drugs to the brain.

To improve the therapeutic picture for treatment of N. fowleri infection, investigators at the University of California San Diego (USA) sought to identify new molecular targets that could link anti-Naegleria drug discovery to the existing pharmacopeia of brain-penetrant drugs. To this end, they used inhibitors with known mechanism of action as molecular probes to map the sterol biosynthesis pathway of N. fowleri by GC-MS analysis of metabolites.

Results published in the September 13, 2018, online edition of the journal PLoS Pathogens suggested that two enzymes downstream to CYP51 - sterol C24-methyltransferase (SMT, ERG6) and sterol delta8−delta7-isomerase (ERG2) - were potential therapeutic drug targets in N. fowleri. The demethylated products of the CYP51 reaction are vital intermediates in pathways leading to the formation of cholesterol in humans, ergosterol in fungi, and other types of sterols in plants. These sterols localize to the plasma membrane of cells, where they play an important structural role in the regulation of membrane fluidity and permeability and also influence the activity of enzymes, ion channels, and other cell components that are embedded within.

The currently approved drugs tamoxifen and Prozac were found to inhibit the two different enzymes in N. fowleri's sterol biosynthesis pathway. While it required a dose of 54.5 micromolar miltefosine (an investigational drug currently recommended for the treatment of PAM) to arrest the growth of half the amoebae growing in vitro, it only took 5.8 micromolar tamoxifen and 31.8 micromolar Prozac.

"Not many drugs can cross the blood-brain barrier," said senior author Dr. Larissa Podust, associate professor at of pharmacy at the University of California, San Diego. "Even if a drug can inhibit or kill the amoeba in a dish, it will not work in a host animal if it does not make it into the brain. That is why we started with drugs known for their brain effects."

Related Links:
University of California San Diego

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.