We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Identifying Potential Drugs that Modify RNA Expression

By LabMedica International staff writers
Posted on 12 Jul 2018
Print article
Image: A hairpin loop from a pre-mRNA. Highlighted are the nucleobases (green) and the ribose-phosphate backbone (blue). This is a single strand of RNA that folds back upon itself (Photo courtesy of Wikimedia Commons).
Image: A hairpin loop from a pre-mRNA. Highlighted are the nucleobases (green) and the ribose-phosphate backbone (blue). This is a single strand of RNA that folds back upon itself (Photo courtesy of Wikimedia Commons).
A team of drug developers has described a small molecule microarray-based approach that allows for unmodified low molecular weight compounds, including [U.S.] Food and Drug Administration-approved drugs, to be probed for binding to RNA motif libraries in a massively parallel format.

Potential RNA drug targets for small molecules are found throughout the human transcriptome, yet small molecules known to elicit a pharmacological response by directly targeting RNA have been limited to antibacterials. To expand the potential of small molecular weight drugs for cancer therapeutics, investigators at the Scripps Research Institute (Jupiter, FL, USA) devised "AbsorbArray", a system for rapidly testing a large library of existing drugs against a wide variety of RNA molecules.

The investigators reported in the June 28, 2018, online edition of the journal Cell Chemical Biology that this system revealed that several drug classes - including kinase and topoisomerase inhibitors - bound RNA. The latter avidly bound the motif found in the Dicer site of oncogenic microRNA (miR)-21 and inhibited the processing of this molecule both in vitro and in cells.

The most potent compound was shown to reverse the repression of a downstream protein target and inhibit a miR-21-mediated invasive phenotype. The compound's activity was canceled by overexpression of pre-miR-21. Target validation via chemical crosslinking and isolation by pull-down showed direct engagement of pre-miR-21 by the small molecule in cells demonstrated that RNAs should indeed be considered druggable.

"Known drugs made in the era when RNAs were not considered drug targets are, in fact, binding RNA, and causing some of the drug's effects by modulating targets that were not previously considered," said senior author Dr. Matthew D. Disney, professor of chemistry at the Scripps Research Institute. "We found broad drug classes that bind RNA. There is reason to believe that not only could known drugs bind RNA in a disease setting, but there is more evidence that one should consider RNA as a target in drug-discovery efforts."

"Drugs that patients take every day apparently target RNA, which is only recently being thought of as a target for small molecule medicines," said Dr. Disney. "As new RNAs are found to cause disease, routine medicines may be identified to target them. This would change the perception of RNAs as an afterthought in drug discovery and bring them to the forefront."

Related Links:
Scripps Research Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.