We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Biomarker May Help Monitor MPS Disease Progression

By LabMedica International staff writers
Posted on 15 Aug 2017
Print article
Researchers have identified spermine as a potential biomarker associated with neuropathic forms of mucopolysaccharidoses (MPS), a family of rare metabolic disorders. Assaying for abnormally high levels of spermine may facilitate better diagnosis, monitoring, and identification of more effective drugs.

Development of monitoring assays and treatments for the neurological symptoms of MPS patients have been hindered by lack of objective measures of the extent of central nervous system (CNS) damage. The research team was led by senior author James Wilson, MD, PhD, of the Orphan Disease Center (ODC), Perelman School of Medicine, University of Pennsylvania Health System (Philadelphia, PA, USA), “This new biomarker for CNS symptoms in MPS patients may help families better understand their child’s diagnosis and prognosis and should help clinicians and regulatory agencies to evaluate the efficacy of new therapies,” he said.

Many of the forms of MPS share symptoms, such as vision and hearing problems, hernias, and heart problems. Patient life expectancy varies significantly, but individuals with the most severe form rarely live more than 10 years.

MPS I is the most common form of MPS diseases and is caused by a deficiency of the key enzyme IDUA needed to break down complex sugars in cells. The disorder eventually leads to the abnormal accumulation of sugar fragments and cell death. The two main treatments are bone marrow transplantation and intravenous enzyme replacement therapy; however, neither of these treatments cure the disorder, especially when the disease enters the CNS.

The ODC team screened metabolites from cerebrospinal fluid (CSF) in a canine model of MPS I. This assay revealed a marked elevation of spermine in affected animals. Gene therapy to reduce CSF spermine corrected brain lesions in these dogs. Additional studies with cultured neurons from MPS I mice showed that elevated spermine was responsible for the abnormal overgrowth observed in the mouse cells.

In humans, spermine is elevated in the CSF of 4 MPS subtypes in which cognitive declines are seen, but not in 2 subtypes in which cognitive function is preserved. In MPS I patients, elevated CSF spermine was restricted to patients with genotypes associated with CNS disease. CSF spermine in these patients was reduced following hematopoietic stem cell transplantation -- the only therapy currently capable of improving cognitive outcomes.

“Our findings offer new insights into CNS symptoms in MPS patients,” said first author Christian Hinderer, MD, PhD, “These studies suggest CSF spermine could be used as a biomarker to evaluate the outcome of novel therapeutics designed to treat the CNS manifestations of MPS diseases, which will greatly simplify clinical trials."

“The mission of the ODC is to enable the development of novel diagnostics and treatments for rare diseases,” said Prof. Wilson, “We are offering access to this biomarker to the orphan disease research community for all research purposes at no cost to enable labs to freely conduct assays for their own research and patients’ needs. The only way we will move ahead in our field is to openly collaborate in the pre-competitive space, during the early stages of development of biomarkers and treatments.”

The study, by Hinderer C et al, was published July 19, 2017, in the journal Human Molecular Genetics.

Related Links:
University of Pennsylvania Health System

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.