We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Novel Method Extends Range of Bacteriophage-based Applications

By LabMedica International staff writers
Posted on 04 Jul 2017
Print article
Image: Researchers have developed hybrid bacteriophage particles that could broaden the range of target bacteria (Photo courtesy of Tel Aviv University).
Image: Researchers have developed hybrid bacteriophage particles that could broaden the range of target bacteria (Photo courtesy of Tel Aviv University).
A team of Israeli molecular microbiologists developed a method for extending the host specificity of bacteriophage particles to enable them to transfer DNA into a wide range of pathogenic bacteria.

A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts.

To extend the host range of T7 phage for DNA transduction, investigators at Tel Aviv University (Israel) designed a novel class of hybrid particles that displayed various bacteriophage tail/tail fiber protein combinations. The investigators programmed these modular particles to package and transduce DNA into hosts that normally restricted T7 phage propagation.

The investigators also developed an innovative generalizable platform that considerably enhanced DNA transfer into new hosts by artificially selecting tails that efficiently transduced DNA. In addition, they demonstrated that the hybrid particles were able to transduce desired DNA into desired hosts.

"DNA manipulation of pathogens includes sensitization to antibiotics, killing of pathogens, disabling pathogens' virulence factors, and more," said senior author Dr. Udi Qimron, professor of clinical microbiology and immunology at Tel Aviv University. "We have developed a technology that significantly expands DNA delivery into bacterial pathogens. This may indeed be a milestone, because it opens up many opportunities for DNA manipulations of bacteria that were impossible to accomplish before. This could pave the way to changing the human microbiome - the combined genetic material of the microorganisms in humans - by replacing virulent bacteria with a-virulent bacteria and replacing antibiotic-resistant bacteria with antibiotic-sensitive bacteria, as well as changing environmental pathogens. We have applied for a patent on this technology and are developing products that would use this technology to deliver DNA into bacterial pathogens, rendering them a-virulent and sensitive to antibiotics."

The bacteriophage study was published in the June 1, 2017, issue of the journal Molecular Cell.

Related Links:
Tel Aviv University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.