We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Interrupting a Molecular Signaling Pathway to Treat Prostate Cancer

By LabMedica International staff writers
Posted on 11 Jan 2017
Print article
Image: The molecular model of the protein IkappaBalpha (NF-kappaB inhibitor, alpha) (Photo courtesy of Wikimedia Commons).
Image: The molecular model of the protein IkappaBalpha (NF-kappaB inhibitor, alpha) (Photo courtesy of Wikimedia Commons).
Cancer researchers have traced a molecular pathway that is active in treatment resistant prostate cancer and have suggested therapeutic strategies to circumvent it.

Androgen deprivation therapy is the most effective treatment for advanced prostate cancer, but almost all cancer eventually becomes castration resistant, and the underlying mechanisms are largely unknown. Investigators at The Scripps Research Institute (Juptier, FL, USA) recently identified one of these mechanisms.

They investigators reported in the December 29, 2016, online edition of the journal Molecular Cell that an intrinsic constitutively activated feedforward signaling circuit was formed during the emergence of castration-resistant prostate cancer (CRPC). This signaling pathway comprised the microRNA miR-196b-3p and the proteins IkappaBalpha (NF-kappaB inhibitor, alpha)/NF-kappaB (nuclear factor of kappa light polypeptide gene enhancer in B-cells), Meis2 (Homeobox protein Meis2), and PPP3CC (protein phosphatase 3 catalytic subunit gamma).

NF-kappaB inhibitor, alpha is one member of a family of cellular proteins that function to inhibit the NF-kappaB transcription factor. IkappaBalpha inhibits NF-kappaB by masking the nuclear localization signals of NF-kappaB proteins and keeping them sequestered in an inactive state in the cytoplasm. In addition, IkappaBalpha blocks the ability of NF-kappaB transcription factors to bind to DNA, which is required for NF-kappaB's proper functioning. Inactivation of the IkappaBalpha protein causes NF-kappaB to be chronically active in tumor cells and this activity contributes to the malignant state of these tumor cells.

The use of NF-kappaB inhibitors in treating cancer is complicated by severe side effects related to immunosuppression caused by indiscriminate inhibition of NF-kappaB in normal immune cells. However, the investigators suggested that targeting the other non-IkappaBalpha/NF-kappaB components in this signaling circuit would avoid the suppression of NF-kappaB in normal immune cells while keeping the potent anti-cancer efficacy.

"Disrupting this circuit by targeting any of its individual components blocks the expression of these transcription factors and significantly impairs therapy-resistant prostate cancer," said first author Dr. Ji-Hak Jeong, a research associate at The Scripps Research Institute.

Related Links:
The Scripps Research Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.