We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Enzymatic Degradation of Pyocyanin Blocks Pseudomonas Biofilm Formation

By LabMedica International staff writers
Posted on 20 Dec 2016
Print article
Image: A crystal structure of the PodA protein complex with three molecules of 1-hydroxyphenazine, the reaction product, bound in the active sites (Photo courtesy of Kyle Costa, California Institute of Technology).
Image: A crystal structure of the PodA protein complex with three molecules of 1-hydroxyphenazine, the reaction product, bound in the active sites (Photo courtesy of Kyle Costa, California Institute of Technology).
An enzyme isolated from the soil bacterium Mycobacterium fortuitum was found to prevent biofilm formation by the aggressively pathogenic Gram-negative bacterium Pseudomonas aeruginosa.

P. aeruginosa biofilms can develop as chronic opportunistic infections, which are a serious problem for medical care, especially for immunocompromised patients and the elderly. Biofilms often cannot be treated effectively with traditional antibiotic therapy, as they seem to protect bacteria from adverse environmental factors.

Pyocyanin is one of the many toxins produced and secreted by P. aeruginosa. It is a blue, secondary metabolite with the ability to oxidize and reduce other molecules and therefore can kill microbes competing against P. aeruginosa as well as mammalian cells of the lungs, which P. aeruginosa has infected during cystic fibrosis.

Investigators at the California Institute of Technology (Pasadena, USA) and the University of Oxford (United Kingdom) described in the December 8, 2016, online edition of the journal Science the discovery of an enzyme isolated from Mycobacterium fortuitum that oxidized the pyocyanin methyl group to formaldehyde and reduced the pyrazine ring via an unusual tautomerizing demethylation reaction.

Treatment of P. aeruginosa with this pyocyanin demethylase (PodA) enzyme disrupted biofilm formation.

"Pseudomonas aeruginosa causes chronic infections that are difficult to treat, such as those that inhabit burn wounds, diabetic ulcers, and the lungs of individuals living with cystic fibrosis," said senior author Dr. Dianne Newman, professor of biology and geobiology at the California Institute of Technology. "In part, the reason these infections are hard to treat is because P. aeruginosa enters a biofilm mode of growth in these contexts; biofilms tolerate conventional antibiotics much better than other modes of bacterial growth. Our research suggests a new approach to inhibiting P. aeruginosa biofilms."

"What is interesting about this result from an ecological perspective is that a potential new therapeutic approach comes from leveraging reactions catalyzed by soil bacteria," said Dr. Newman. "These organisms likely co-evolved with the pathogen, and we may simply be harnessing strategies other microbes use to keep it in check in nature. The chemical dynamics between microorganisms are fascinating, and we have so much more to learn before we can best exploit them."

Related Links:
California Institute of Technology
University of Oxford
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.