We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Experimental Drug Slows Lung Cancer Growth by Blocking Protein Glycosylation

By LabMedica International staff writers
Posted on 03 Nov 2016
Print article
Image: The experimental drug NGI-1 slows cancer growth by blocking glycosylation of the epidermal growth factor receptor (EGFR), which is shown in the above diagram (Photo courtesy of Wikimedia Commons).
Image: The experimental drug NGI-1 slows cancer growth by blocking glycosylation of the epidermal growth factor receptor (EGFR), which is shown in the above diagram (Photo courtesy of Wikimedia Commons).
An interesting new experimental anti-cancer drug slows growth of certain lung tumor cells by preventing the glycosylation of critical cell surface receptor proteins.

Asparagine (N)-linked glycosylation is a protein modification process that is critical for glycoprotein folding, stability, and cellular localization. To identify small molecules that would inhibit new targets in this biosynthetic pathway, investigators at Yale University (New Haven, CT, USA) and colleagues at several other institutions initiated a cell-based high-throughput screen and lead-compound-optimization campaign. During this campaign the researchers screened more than 350,000 chemical compounds while searching for those that could partially disrupt glycosylation. The result was the small molecule cell-permeable inhibitor NGI-1.

The investigators reported in the October 3, 2016, online edition of the journal Nature Chemical Biology that NGI-1 targeted oligosaccharyltransferase (OST), a hetero-oligomeric enzyme that exists in multiple isoforms and transfers oligosaccharides to recipient proteins.

In non-small-cell lung cancer (NSCLC) cells, NGI-1 blocked cell-surface localization and signaling of the epidermal growth factor receptor (EGFR) glycoprotein, but selectively arrested proliferation in only those cell lines that were dependent on EGFR (or fibroblast growth factor, FGFR) for survival. In these cell lines, OST inhibition caused cell-cycle arrest accompanied by cell morphology changes that were hallmarks of senescence.

“This is important to cancer research because what we are looking for are therapies that do not have a lot of effect on normal cells but do have a lot of effect on tumor cells, and this falls into that category,” said senior author Dr. Joseph Contessa, associate professor of therapeutic radiology and of pharmacology at Yale University. “We have therapies, and they are good therapies, but they are not enough. We need to take the next step.”

Related Links:
Yale University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.