We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Class of Nanoparticle Drug Transporters Selectively Target Lung Cancer Cells

By LabMedica International staff writers
Posted on 26 Sep 2016
Print article
Image: Lung cancer cells (Photo courtesy of SPL).
Image: Lung cancer cells (Photo courtesy of SPL).
A novel class of nanoparticles is able to deliver siRNA-based drugs selectively to lung cancer cells without harming normal cells.

Conventional chemotherapeutic agents kill all rapidly dividing cells, which produces numerous harmful side effects. To develop a method for delivering chemotherapeutic drugs specifically to cancer cells, investigators at the University of Texas Southwestern Medical Center (Dallas, USA) worked with a unique pair of matched cancer/normal cell lines obtained from a single patient.

The investigators screened hundreds of nanoparticle (NP) polymers looking for those that would be taken up only by the cancer cell line while being excluded by the normal cells. They identified selective NPs that promoted rapid endocytosis into HCC4017 cancer cells, but were arrested at the membrane of HBEC30-KT normal cells. When injected into tumor xenografts in mice, these cancer-selective NPs were retained in tumors for over one week, whereas nonselective NPs were cleared within hours.

The nanoparticles were loaded with a siRNA drug. Small interfering RNAs (siRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets.

Results published the September 12, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences revealed that the NPs improved siRNA-mediated cancer cell apoptosis and caused significant suppression of tumor growth. Selective NPs were also able to mediate gene silencing in xenograft and orthotopic tumors via i.v. injection or aerosol inhalation, respectively.

These results highlighted the observation that different cells responded differently to the same drug carrier, an important factor that should be considered in the design and evaluation of all NP carriers. Since no targeting ligands were required, these functional polyester NPs provided an alternative approach for selective drug delivery to tumor cells that may improve efficacy and reduce adverse side effects of cancer therapies.

"The discovery that nanoparticles can be selective to certain cells based only on their physical and chemical properties has profound implications for nanoparticle-based therapies because cell type specificity of drug carriers could alter patient outcomes in the clinic," said senior author Dr. Daniel Siegwart, assistant professor of biochemistry at the University of Texas Southwestern Medical Center. "At the same time, a deeper understanding of nanoparticle interactions in the body opens the door to predict patient responses to existing liposome and nanoparticle therapies, and offers the potential to create future drug carriers customized according to individual genetic profiles."

Related Links:
University of Texas Southwestern Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.