We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Stabilizing Iron-Sulfur Transport Clusters Reduces Size and Aggressiveness of Tumors

By LabMedica International staff writers
Posted on 21 Sep 2016
Print article
Image: Researchers have discovered that the drug pioglitazone, used to treat diabetes, shows some ability to halt the overexpression of the protein NAF-1, which has been associated with the proliferation of breast cancer (Photo courtesy of Fang Bai, Rice University).
Image: Researchers have discovered that the drug pioglitazone, used to treat diabetes, shows some ability to halt the overexpression of the protein NAF-1, which has been associated with the proliferation of breast cancer (Photo courtesy of Fang Bai, Rice University).
An international team of cancer researchers has identified a protein that, when overexpressed, enabled breast tumors to better withstand oxidative stress thereby becoming much larger and more aggressive.

The protein in question is the iron–sulfur (Fe-S) nutrient-deprivation autophagy factor-1 (NAF-1) protein, a member of the NEET family that transport clusters of iron and sulfur molecules inside cells. The clusters, which adhere to the mitochondrial membrane, help regulate processes in cells by controlling reduction-oxidation (redox) and metabolic activity. NAF-1 is unique among Fe-S proteins due to its 3Cys-1His cluster coordination structure that allows it to be relatively stable, while still being able to transfer its clusters to apo-acceptor proteins.

Investigators at The Hebrew University of Jerusalem (Israel) and Rice University (Houston, TX, USA) reported in the September 12, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that overexpression of NAF-1 in xenograft breast cancer tumors resulted in a dramatic augmentation in tumor size and aggressiveness, and that NAF-1 overexpression enhanced the tolerance of cancer cells to oxidative stress.

The importance of NAF-1 overexpression was emphasized by the discovery of a NAF-1 mutant with a single point mutation that stabilized the NAF-1 clusters. The presence of the mutated form of the protein in xenograft breast cancer tumors resulted in a dramatic decrease in tumor size that was accompanied by enhanced mitochondrial iron and reactive oxygen accumulation and reduced cellular tolerance to oxidative stress. Treating breast cancer cells with pioglitazone, a compound that stabilized the 3Cys-1His cluster of NAF-1, resulted in a similar effect on mitochondrial iron and reactive oxygen species accumulation. This finding supports the potential use of drugs that suppress NAF-1 accumulation or stabilize its clusters for the treatment of cancers that display high expression levels of NAF-1.

Senior author Dr. Rachel Nechushtai, professor of biochemistry at The Hebrew University of Jerusalem, said, "Tumors depend on the lability, or the transient nature, of the clusters. The more NAF-1 you make, and the more its clusters can be transferred, the bigger the tumor develops. We knew from previous studies that pioglitazone stabilizes the cluster. With the mutant, we hardly got any tumors and did not see angiogenesis (the process through which new blood vessels form). When we did see tumors, they were white, not red, because they had no blood vessels."

"We thought, "How do we connect this to the clinics?" The only connection was to try a drug that, like the mutation, also stabilizes the cluster," said Dr. Nechushtai. "Dr. Fang Bai of Rice University showed in her simulations where the binding site is and why the drug stabilizes the cluster."

Related Links:
Hebrew University of Jerusalem
Rice University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.