We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




High-Resolution Analysis of Leishmanial Ribosome Provides Clues for Drug Design

By LabMedica International staff writers
Posted on 08 Sep 2016
Print article
Image: Surface model of Leishmania’s ribosomal large subunit (rLSU) based on the first high-resolution structure, obtained by 2.8-A° cryo-EM. Circled are the locations of three focal points of rLSU rRNA segmentation in regards to the ribosome exit tunnel. 26S rRNA segment-terminals in the leishmanial ribosome were found to converge to these three separate focal points, all located on the solvent-exposed side of the rLSU. The 5.8S rRNA chain is represented as yellow surface and all other chains are represented as cartoon tubes. The study revealed the fragmented nature of leishmanial rRNA and irregular distribution of rRNA modifications, with implications for drug development against Leishmania and related parasites (Photo courtesy of Cell Reports).
Image: Surface model of Leishmania’s ribosomal large subunit (rLSU) based on the first high-resolution structure, obtained by 2.8-A° cryo-EM. Circled are the locations of three focal points of rLSU rRNA segmentation in regards to the ribosome exit tunnel. 26S rRNA segment-terminals in the leishmanial ribosome were found to converge to these three separate focal points, all located on the solvent-exposed side of the rLSU. The 5.8S rRNA chain is represented as yellow surface and all other chains are represented as cartoon tubes. The study revealed the fragmented nature of leishmanial rRNA and irregular distribution of rRNA modifications, with implications for drug development against Leishmania and related parasites (Photo courtesy of Cell Reports).
Derived from a 2.8-Å cryo-EM map, researchers have achieved an atomic resolution structure of the Leishmania donovani large ribosomal subunit (rLSU). Comparison with other eukaryotes and with bacteria provides an important framework for better understanding ribosome biogenesis and a solid structural basis for developing highly selective therapeutics against Leishmania and closely related parasites.

Leishmania is a single-cell eukaryotic parasite of the Trypanosomatidae family of microbes, whose members cause various debilitating and often fatal diseases. A team of researchers from the Weizmann Institute of Science (Rehovot, Israel), University of Michigan Life Sciences Institute (Ann Arbor, MI, USA), and Hebrew University-Hadassah Medical School (Jerusalem, Israel), have now obtained the first high-resolution snapshots of the parasites’ ribosome, providing a detailed structural map of the rLSU.

The unique features that make the Trypanosomatid ribosome distinct from other eukaryotes are what make it such an attractive drug target as “you need to be able to attack the pathogen without harming the host’s cells,” said study co-leader Prof. Georgios Skiniotis, PhD, U. Michigan. Study co-leader Prof. and 2009 Nobel Laureate Ada Yonath, PhD, Weizmann Institute, added: Previous studies were able to obtain resolutions of 5.6 angstroms and 12 angstroms. The new study obtained a resolution of 2.8 angstroms — which revealed a nearly complete atomic structure and new functional details.

Among other findings, the work enabled direct observation of eukaryotic rRNA modifications (e.g. 2’-O methylations) known to play roles in ribosome assembly and function. These observations showed that leishmanial rRNA is fragmented and hyper-modified at unique positions and that fragmented rRNA termini converge into three focal points involving 5.8S.

The study, by Shalev-Benami M, Zhang Y, et al, was published in the July 12, 2016, issue of the journal Cell Reports.

Related Links:
Weizmann Institute of Science
University of Michigan Life Sciences Institute
Hebrew University-Hadassah Medical School
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.