We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Fluorinated Nanoparticles Facilitate Drug Transfer to Cellular Cytosol

By LabMedica International staff writers
Posted on 22 Jan 2019
Print article
Image: A representation of the movement of the flower-like particle as it makes its way to deliver therapeutic genes (Photo courtesy of Washington State University).
Image: A representation of the movement of the flower-like particle as it makes its way to deliver therapeutic genes (Photo courtesy of Washington State University).
In a proof-of-principle study, novel "nanoflower" drug transporters were used to successfully deliver model drug analogues to cells growing in culture.

Despite advances in the development of nanoparticle-based drug transport systems, very few nanomaterials can be efficiently delivered to the cellular cytosol. Investigators at Washington State University (Pullman, USA) chose to attack this problem by designing crystalline nanoflower‐like particles, which were synthesized from fluorinated sequence‐defined peptoids.

In peptoids the side chain is connected to the nitrogen of the peptide backbone, instead of the alpha-carbon as in peptides. Notably, peptoids lack the amide hydrogen, which is responsible for many of the secondary structure elements in peptides and proteins. In addition, peptoids are not vulnerable to degradation by protease enzymes.

The inclusion of fluorine into the nanoparticle matrix guaranteed that the crystallinity and fluorination of the particles would enable highly efficient cytosolic delivery with minimal cytotoxicity. Fluorination increased lipophilicity because the bond was more hydrophobic than the carbon–hydrogen bond, and helped in cell membrane penetration and hence bioavailability. An added bonus was the fact that the trifluoromethyl moiety is one of the most lipophilic groups known, which has big advantages for the particles' bioavailability.

The investigators crafted flower-like particles of about 150 nanometers in size from sheets of fluorinated peptoids with added fluorescent probes. They reported in the December 27, 2018, issue of the journal, Small that a cytosol delivery rate of 80% had been achieved for the fluorinated peptoid nanoflowers.

These nanocrystals could be adapted to carry therapeutic genes, such as mRNA and effectively deliver the payload into the cytosol, demonstrating the universal delivery capability of the nanocrystals. The results indicated that self‐assembly of crystalline nanomaterials from fluorinated peptoids paved a new way toward development of nanocargoes with efficient cytosolic gene delivery capability.

"To develop nanotechnology for medical purposes, the first thing to consider is toxicity -- That is the first concern for doctors," said senior author Dr. Yueh Lin, professor of mechanical and materials engineering at Washington State University. "The nanoflowers successfully and rapidly escaped and exhibited minimal cytotoxicity. This paves a new way for us to develop nanocargoes that can efficiently deliver drug molecules into the cell and offers new opportunities for targeted gene therapies."

Washington State University filed a patent application for the new technology and is seeking industrial partners for further development.

Related Links:
Washington State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.