We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Preventing Accumulation of Senescent Cells Reverses Adverse Signs of Aging

By LabMedica International staff writers
Posted on 15 Jan 2019
Print article
Image: Drug treatment eliminates senescent cells from tissues of old mice. The blue staining shows senescent cells in lung and liver tissue. The amount of the staining is significantly reduced following the drug treatment (Photo courtesy of The Weizmann Institute of Science).
Image: Drug treatment eliminates senescent cells from tissues of old mice. The blue staining shows senescent cells in lung and liver tissue. The amount of the staining is significantly reduced following the drug treatment (Photo courtesy of The Weizmann Institute of Science).
Researchers working with mouse models have shown that some of the less desirable signs of aging, such as chronic inflammation and reduced function of some organs, could be reversed by treatment to reduce the number of senescent cells that have accumulated in the animal.

Senescent cells are aged or damaged cells that accumulate in tissues in advanced age. They no longer are able to perform their normal roles and interfere with the functioning of the tissue in which they accumulate. Elimination of senescent cells is considered to be a promising therapeutic approach.

The extent of immune-system involvement in regulating age-related accumulation of senescent cells, and its consequences, are unknown. To evaluate the role of the immune system in the aging process, investigators at the Weizmann Institute of Science (Rehovot, Israel) worked with Prf1−/− mice with impaired cell cytotoxicity, which suffered from chronic inflammation, and with progeroid (progeroid means "resembling premature aging") mice with impaired cell cytotoxicity that promoted senescent-cell accumulation and shortened lifespan.

The investigators reported in the December 21, 2018, online edition of the journal Nature Communications that Prf1−/− mice with impaired cell cytotoxicity exhibited both higher senescent cell tissue burden and chronic inflammation. They suffered from multiple age-related disorders and lower survival. The accumulation of senescent cells in these Prf1−/− mice was accompanied by a progressive state of chronic inflammation, followed by increased tissue fibrosis and other types of tissue damage, as well as compromised organ functionality. The poor health of old Prf1−/− mice was associated with fitness reduction, weight loss, kyphosis (abnormally excessive convex curvature of the spine), older appearance, and shorter lifespan than that of wild type controls.

The investigators reported that elimination of senescent cells from old Prf1−/− mice could be achieved by pharmacological inhibitors of the BCL-2 family of proteins, such as ABT-737. First developed for potential cancer chemotherapy, ABT-737 was subsequently identified as a senolytic (a drug that selectively induces cell death in senescent cells). This pharmacological approach attenuated age-related phenotypes and gene expression profile in Prf1−/− mice. Furthermore, implementation of this approach on Prf1−/− progeroid mice increased median lifespan of these animals.

These findings shed new light on mechanisms governing senescent-cell presence in aging, and could motivate new strategies for regenerative medicine.

Related Links:
Weizmann Institute of Science

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.