We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Hormone Treatment Linked to Development of Aggressive Cancer

By LabMedica International staff writers
Posted on 06 Dec 2018
Print article
Image: Graph shows elevated activity of a transcription-factor network that includes the molecule onecut2 in tumors of patients whose prostate cancer resisted hormone therapy (above purple bar) compared with other types (Photo courtesy of the Nature Publishing Group).
Image: Graph shows elevated activity of a transcription-factor network that includes the molecule onecut2 in tumors of patients whose prostate cancer resisted hormone therapy (above purple bar) compared with other types (Photo courtesy of the Nature Publishing Group).
A team of cancer researchers has identified a gene that promotes the growth and spread of the most aggressive type of prostate cancer.

While many forms of prostate cancer require little or no treatment, the aggressive type that spreads to other parts of the body and resists hormone therapy is usually fatal with only a third of such patients living for five years after diagnosis.

Previous studies have shown that treatment of prostate cancer (PC) by androgen suppression promoted the emergence of aggressive variants that were androgen receptor (AR) independent. In a paper published in the November 26, 2018, online edition of the journal Nature Medicine, investigators at Cedars-Sinai Medical Center (Los Angeles, CA, USA) identified the transcription factor ONECUT2 (OC2) as a master regulator of AR networks in metastatic castration-resistant prostate cancer (mCRPC).

The ONECUT2 (one cut homeobox 2) gene encodes a member of the onecut family of transcription factors, which are characterized by a cut domain and an atypical homeodomain. The OC2 protein binds to specific DNA sequences and stimulates expression of target genes, including genes involved in melanocyte and hepatocyte differentiation.

In the current study, OC2 was found to act as a survival factor in mCRPC models, suppressing the AR transcriptional program by direct regulation of AR target genes. It also activated genes associated with neural differentiation and progression to lethal disease. Furthermore, OC2 was active in a substantial subset of human prostate adenocarcinoma and neuroendocrine tumors.

Following up, the investigators identified the compound CSRM617, which counteracted the action of onecut2. They showed that CSRM617 significantly reduced the size of prostate cancer metastases in mice.

"We need fresh strategies to prevent prostate cancer from turning deadly for the thousands of men whose disease metastasizes and withstands hormone therapy," said senior author Dr. Michael Freeman, professor of surgery and biomedical sciences at Cedars-Sinai Medical Center. "Our research suggested that onecut2 is a master regulator of lethal prostate cancer that may be a useful therapeutic target in up to a third of patients whose cancer spreads and evades hormone therapy."

Related Links:
Cedars-Sinai Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.