We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Synthetic Fatty Acid Derivatives Display Anti-Cancer Potential

By LabMedica International staff writers
Posted on 26 Jul 2018
Print article
Image: A ball-and-stick model of the docosahexaenoic acid (DHA) molecule. DHA is an omega-3 fatty acid that is a primary structural component of the human brain, cerebral cortex, skin, and retina (Photo courtesy of Wikimedia Commons).
Image: A ball-and-stick model of the docosahexaenoic acid (DHA) molecule. DHA is an omega-3 fatty acid that is a primary structural component of the human brain, cerebral cortex, skin, and retina (Photo courtesy of Wikimedia Commons).
Metabolites produced during digestion of omega-3 fatty acids have been found to have anti-cancer properties, and their synthetic derivatives have the potential to be developed into potent chemotherapeutic drugs.

Dietary omega-3 fatty acids, such as docosahexaenoic acid (DHA), have been shown to suppress tumor growth through their conversion to epoxide metabolites. Alternatively, DHA is converted enzymatically into docosahexaenoylethanolamide (DHEA), an endocannabinoid with anti-proliferative activity.

Investigators at the University of Illinois (Champaign-Urbana, USA) had previously described a novel class of anti-inflammatory DHEA-epoxide derivative called epoxydocospentaenoic-ethanolamide (EDP-EA) that contained both ethanolamide and epoxide moieties. To expand those findings they examined the anti-tumorigenic properties of EDP-EAs in an osteosarcoma (OS) mouse model.

The investigators showed an approximately 80% increase in EDP-EAs in metastatic versus normal lungs of mice. In addition they found significant differences in the apoptotic and anti-migratory potencies of different EDP-EA structural isomers, which were partially mediated through the cannabinoid receptor 1 (CB1). The cannabinoid receptor is represented in relatively high density on the surface of cancer cells.

The investigators then synthesized derivatives of the most pro-apoptotic isomer. These derivatives were found to display reduced hydrolytic susceptibility to fatty acid amide hydrolase (FAAH) and increased CB1-selective binding.

"We have a built-in endocannabinoid system which is anti-inflammatory and pain-reducing. Now we see it is also anti-cancer, stopping the cells from proliferating or migrating," said senior author Dr. Aditi Das, professor of comparative biosciences at the University of Illinois. "These molecules could address multiple problems: cancer, inflammation, and pain."

"The dramatic increase indicated that these molecules were doing something to the cancer - but we did not know if it was harmful or good," said Dr. Das. "We asked, are they trying to stop the cancer, or facilitating it? So we studied the individual properties and saw that they are working against the cancer in several ways. Dietary consumption of omega-3 fatty acids can lead to the formation of these substances in the body and may have some beneficial effects. However, if you have cancer, you want something concentrated and fast acting. That is where the endocannabinoid epoxide derivatives come into play - you could make a concentrated dose of the exact compound that is most effective against the cancer. You could also mix this with other drugs such as chemotherapies."

Related Links:
University of Illinois

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.