We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Novel Bacterial Inhibitor Blocks Lysozyme Activity in Model

By LabMedica International staff writers
Posted on 18 Jul 2018
Print article
Image: This photomicrograph reveals the histopathology in an acute case of gonococcal urethritis using Gram-stain technique. This slide demonstrates the non-random distribution of gonococci among polymorphonuclear neutrophils. Note that there are both intracellular and extracellular bacteria in the field of view (Photo courtesy of the CDC).
Image: This photomicrograph reveals the histopathology in an acute case of gonococcal urethritis using Gram-stain technique. This slide demonstrates the non-random distribution of gonococci among polymorphonuclear neutrophils. Note that there are both intracellular and extracellular bacteria in the field of view (Photo courtesy of the CDC).
A team of molecular microbiologists has identified a mechanism by which certain bacteria – in particular the Gram-negative pathogen Neisseria gonorrhoeae – avoid lysozyme destruction.

Lysozyme, also known as muramidase or N-acetylmuramide glycanhydrolase is an antimicrobial enzyme produced by animals that forms part of the innate immune system. Lysozyme is a glycoside hydrolase that catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan, which is the major component of gram-positive bacterial cell wall. This hydrolysis in turn compromises the integrity of bacterial cell walls causing lysis of the bacteria.

Lysozymes are ubiquitous as the first line of immune defense against microbes in animals. They exert bactericidal action through antimicrobial peptide activity and peptidoglycan hydrolysis. Gram-negative bacteria developed several weapons to battle lysozymes, including inhibitors of c-type lysozymes in the MliC/PliC family and the Neisseria adhesin complex protein (ACP). Until the recent discovery of ACP, no proteinaceous lysozyme inhibitors were reported for the genus Neisseria, including the important human pathogen N. gonorrhoeae.

Investigators at Oregon State University (Corvallis, USA) have changed this picture. In a paper published in the July 5, 2018, online edition of the journal PLOS Pathogens, they described a previously unrecognized gonococcal virulence mechanism involving a protein encoded by the open reading frame ngo1063 that acted to counteract c-type lysozyme and provided a competitive advantage to the microorganism in a gonorrhea mouse model. They named this protein SliC for "surface-exposed lysozyme inhibitor of c-type lysozyme."

Although SliC displayed low overall primary sequence similarity to the MliC/PliC inhibitors, it was found to have a parallel inhibitory mechanism. The investigators showed that SliC was a surface-displayed lipoprotein in N. gonorrhoeae and, through its lysozyme-blocking function, played a critical role in colonization of genital tract mucosae during infection in the female gonorrhea mouse model.

"The infections very often are silent," said senior author Dr. Aleksandra Sikora, assistant professor of pharmacy at Oregon State University. "Up to 50% of infected women do not have symptoms, but those asymptomatic cases can still lead to some very severe consequences for the patient's reproductive health, miscarriage or premature delivery. This is the first time an animal model has been used to demonstrate a lysozyme inhibitor's role in gonorrhea infection. Together, all of our experiments show how important the lysozyme inhibitor is. This is very exciting."

Related Links:
Oregon State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.