We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Oral Cambinol Treatment Shows Potential for Blocking Development of AD

By LabMedica International staff writers
Posted on 16 May 2018
Print article
Image: A model of cambinol (small yellow structure near top center) binding to nSMAse2 enzyme (Photo courtesy of Kanagasabai Vadive, University of California, Los Angeles).
Image: A model of cambinol (small yellow structure near top center) binding to nSMAse2 enzyme (Photo courtesy of Kanagasabai Vadive, University of California, Los Angeles).
Alzheimer's disease researchers have shown that the low molecular weight drug cambinol blocks the formation of exosomes that allow the spread of insoluble, toxic tau aggregates, which are characteristic of the neurodegenerative disorder.

Tau proteins are components of the cytoskeleton of neurons, but in Alzheimer's disease, tau proteins become abnormally modified and condense into insoluble "neurofibrillary tangles" that destroy these brain cells. Furthermore, dying cells encase tau aggregates in exosome lipid vesicles, which bud off and "seed" neighboring tissues, spreading the disease.

During a screen of potential drug candidates capable of blocking the seeding of tau tangles, investigators at the University of California, Los Angeles (USA), identified the compound cambinol. Previous studies had shown that cambinol was a novel uncompetitive inhibitor of the enzyme nSMase2 (neutral sphingomyelinase 2). The enzyme nSMase2 had been found to be critically required for catalyzing the production of exosome vesicles.

The inhibitory activity of cambinol for nSMase2 was approximately 10-fold more potent than for its previously known target, SIRT1/2 (silence information regulator 1 and 2). Cambinol decreased tumor necrosis factor-alpha or interleukin-1 beta-induced increases of ceramide and cell death in primary neurons. A preliminary study of cambinol structure and activity identified the main structural features required for nSMase2 inhibition.

In a paper published in the April 9, 2018, online edition of the journal Biochemical and Biophysical Research Communications, the investigators demonstrated that cambinol was an inhibitor of cell-to-cell tau propagation. In vitro data revealed that cambinol inhibited nSMase2 enzyme activity in dose response fashion, and suppressed exosome vesicle production while reducing tau seed propagation. In vivo testing in mice showed that cambinol could reduce the nSMase2 activity in the brain after oral administration.

"Over 200 molecules have been tested as disease-modifying Alzheimer's therapy in clinical trials, and none has yet attained the Holy Grail," said senior author Dr. Varghese John, associate professor of neurology at the University of California, Los Angeles. "Our paper describes a novel approach to slow Alzheimer's progression by showing it is possible to inhibit propagation of pathologic forms of tau."

Decreased nSMase2 catalytic activity was observed in the brains of mice given oral cambinol. "Getting molecules into the brain is a big hurdle, because most drugs do not penetrate the blood-brain barrier, said Dr. John. "Now we know we can treat animals with cambinol to determine its effect on Alzheimer's pathology and progression."

Related Links:
University of California, Los Angeles

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.